Wednesday, November 14, 2018

[PaleoOrnithology • 2018] Mirarce eatoni • The Most Complete Enantiornithine (Aves, Ornithothoraces) from North America and A Phylogenetic Analysis of the Avisauridae


Mirarce eatoni 
Atterholt​, Hutchison & O’Connor, 2018

 Illustration: Brian Engh. 

Abstract
The most complete known North American enantiornithine was collected in 1992 but never formally described. The so-called “Kaiparowits avisaurid” remains one of the most exceptional Late Cretaceous enantiornithine fossils. We recognize this specimen as a new taxon, Mirarce eatoni (gen. et sp. nov.), and provide a complete anatomical description. We maintain that the specimen is referable to the Avisauridae, a clade previously only known in North America from isolated tarsometatarsi. Information from this specimen helps to clarify evolutionary trends within the Enantiornithes. Its large body size supports previously observed trends toward larger body mass in the Late Cretaceous. However, trends toward increased fusion of compound elements across the clade as a whole are weak compared to the Ornithuromorpha. The new specimen reveals for the first time the presence of remige papillae in the enantiornithines, indicating this feature was evolved in parallel to dromaeosaurids and derived ornithuromorphs. Although morphology of the pygostyle and (to a lesser degree) the coracoid and manus appear to remain fairly static during the 65 million years plus of enantiornithine evolution, by the end of the Mesozoic at least some enantiornithine birds had evolved several features convergent with the Neornithes including a deeply keeled sternum, a narrow furcula with a short hypocleidium, and ulnar quill knobs—all features that indicate refinement of the flight apparatus and increased aerial abilities. We conduct the first cladistic analysis to include all purported avisuarid enantiornithines, recovering an Avisauridae consisting of a dichotomy between North and South American taxa. Based on morphological observations and supported by cladistic analysis, we demonstrate Avisaurus to be paraphyletic and erect a new genus for “A. gloriae,” Gettyia gen. nov.


Figure 2:  Mirarce eatoniA sampling of the best-preserved cervical and thoracic vertebrae, including the axis.
 (A) Axis in lateral view. (B) Axis in dorsal view. (C) Axis in caudal view. (D) Third cervical vertebra in lateral view. (E) Third cervical vertebra in ventral view. (F) Posterior cervical vertebra in lateral view. (G) Posterior cervical vertebra in ventral view. (H) Thoracic vertebra in lateral view. (I) Thoracic vertebra in ventral view. (J) Thoracic vertebra in anterior view.
 Abbreviations: ds, dens; ep, epipophysis; lg, lateral groove; lr, lateral ridge; pap, parapophysis; prz, prezygopophysis; poz, postzygopophysis; ps, posterior shelf; sp, spinous process; vp, ventral process. Scale bar equals one cm. 
Photos: David Strauss.

 Figure 19: A skeletal reconstruction of Mirarce eatoni showing preserved skeletal elements (white).
Illustration: Scott Hartman.

Systematic paleontology
Class AVES Linnaeus, 1758
ORNITHOTHORACES Chiappe, 1995
Subclass ENANTIORNITHES Walker, 1981

Family AVISAURIDAE Brett-Surman and Paul, 1985

Revised diagnosis: Enantiornithine birds with the following unique combination of morphological features: tarsometatarsus with inclined proximal articular surface; strong transverse convexity of the dorsal surface of the mid-shaft of metatarsal III; a distinct plantar projection of the medial rim of the trochlea of metatarsal III (unambiguously supported in our phylogenetic analysis); and a laterally compressed J-shaped metatarsal I (modified from Chiappe (1993)).

Phylogenetic definition: the last common ancestor of Neuquenornis volans and Avisaurus archibaldi plus all its descendants (Chiappe, 1993).

Included genera: Avisaurus (Brett-Surman & Paul, 1985); Soroavisaurus (Chiappe, 1993); Neuquenornis (Chiappe & Calvo, 1994); Intiornis (Novas, Agnolín & Scanferla, 2010); Mirarce (current study); and Gettyia (current study).


MIRARCE GEN. NOV.

Etymology: Named for its spectacular preservation and level of morphological detail (Latin “mirus” for wonderful), and after Arce, winged messenger of the titans in Greek mythology, for the evidence suggesting a refined flight apparatus in this species.

Type species: Mirarce eatoni sp. nov. (by monotypy)

Etymology: The type species is named in honor of Dr. Jeffrey Eaton, for his decades of work contributing to our understanding of the Kaiparowits Formation and the fossils recovered from it.


MIRARCE EATONI SP. NOV

Holotype: UCMP 139500, a three-dimensional partial skeleton consisting of several cervical and thoracic vertebrae (including the axis), the pygostyle, almost all phalanges from the left pes and several from the right, a complete humerus, femur, and tarsometatarsus, a partial scapula, coracoid, furcula, and tibiotarsus, as well as fragments of the sternum, radius, ulna, carpometacarpus, and manual phalanges (see Table 1 for measurements of select elements).

Type horizon and locality: UCMP locality V93097, Late Cretaceous (late Campanian 76–74.1 Ma; Roberts, Deino & Chan, 2005) Kaiparowits Formation of Grand Staircase-Escalante National Monument in Garfield County, Utah, USA.

Diagnosis. A large, turkey-sized avisaurid (see above diagnosis) enantiornithine (thoracic vertebrae with centrally located parapophyses; pygostyle cranially forked with ventrolateral processes; furcula dorsolaterally excavated; Chiappe & Walker, 2002) with the following autapomorphies: posterior end of sternum weakly flexed caudodorsally, terminating in a small knob; ulnae with remige papillae present; small, deep, circular pit located just craniolateral to the femoral posterior trochanter; small, triangular muscle scar on medial margin of the femoral shaft just distal to the head followed distally by a much larger proximodistally elongate oval; distinct, rugose ridge-like muscle attachment located on the craniomedial margin of the femur a quarter length from the distal end; and tubercle for the m. tibialis cranialis located at the mid-point of the shaft of metatarsal II on the dorsal surface. The new species is further distinguished by the unique combination of the following characters: acrocoracoidal tubercle very weakly developed and medially located; furcula with truncate (untapered) omal tips weakly developed into articular facets and oriented perpendicular to the axis of the rami; ventral projection of the sternal keel proportionately greater than in most other enantiornithines (similar to condition observed in Neuquenornis); acetabulum fully perforate; medial surface of the medial condyle of the tibiotarsus with deep circular excavation; and elongate, slightly raised, flat, oval surface present on the medial edge of the plantar surface of metatarsal II continuous with a weak medial plantar crest.

Figure 20: A reconstruction of living Mirarce eatoni, illustrating the large body size of this taxon.
 Illustration: Brian Engh.

Revised Systematic Paleontology
GETTYIA GEN. NOV.

Etymology: Named in honor of Mike Getty, a great friend, technician, and field paleontologist, who is dearly missed.


GETTYIA GLORIAE (Varricchio & Chiappe, 1995) new comb.

Holotype: MOR 553E/6.19.91.64, a three-dimensional tarsometatarsus missing part of metatarsal IV.

Type horizon and locality: Upper Cretaceous (Campanian) Two Medicine Formation, MOR locality TM-068, Glacier County, Montana, USA.

Diagnosis: small avisaurid enantiornithine with the following unique combination of features: dorsal surface of the tarsometatarsus strongly inclined; attachment for the m. tibialis cranialis located beyond the midpoint of the tarsometatarsus; and distal vascular foramen completely closed by metatarsal IV.


Jessie Atterholt​, J. Howard Hutchison and Jingmai K. O’Connor. 2018. The Most Complete Enantiornithine from North America and A Phylogenetic Analysis of the Avisauridae. PeerJ. 6:e5910.  DOI: 10.7717/peerj.5910