Miopetaurista neogrivensis Mein 1970
in Casanovas-Vilar, Garcia-Porta, Fortuny, et al., 2018.
|
Abstract
Flying squirrels are the only group of gliding mammals with a remarkable diversity and wide geographical range. However, their evolutionary story is not well known. Thus far, identification of extinct flying squirrels has been exclusively based on dental features, which, contrary to certain postcranial characters, are not unique to them. Therefore, fossils attributed to this clade may indeed belong to other squirrel groups. Here we report the oldest fossil skeleton of a flying squirrel (11.6 Ma) that displays the gliding-related diagnostic features shared by extant forms and allows for a recalibration of the divergence time between tree and flying squirrels. Our phylogenetic analyses combining morphological and molecular data generally support older dates than previous molecular estimates (~23 Ma), being congruent with the inclusion of some of the earliest fossils (~36 Ma) into this clade. They also show that flying squirrels experienced little morphological change for almost 12 million years.
Fig 7: Flying squirrel phylogeny and node dating estimates based on a Bayesian total evidence analysis including Miopetaurista neogrivensis. |
Conclusions:
Miopetaurista neogrivensis is the oldest unquestionable flying squirrel and dates back to the middle/late Miocene boundary (11.6 Ma). Its diagnostic wrist anatomy indicates that the two subtribes of flying squirrels had already diverged at that time. Moreover, this new fossil allows for a recalibration of flying squirrel time of origin and diversification, generally providing somewhat older estimates than previous molecular analyses. These differ according to the phylogenetic method used, total evidence analysis estimates an interval of 36.6 – 24.9 Ma while node dating results in a younger estimate of 30.6 – 17.4 Ma. Therefore, we cannot rule out that at least some of the oldest (ca. 36 Ma) fossils tentatively identified as flying squirrels may indeed belong to this group. However, the estimates of both independent phylogenetic approaches overlap for the late Oligocene (31 – 25 Ma), which should be considered the most likely interval for flying squirrel divergence. The two flying squirrel subtribes are found to have diverged during the early Miocene (22 – 18 Ma) while most extant genera would do so during the Miocene, although they are not recorded until the Pleistocene. Miopetaurista neogrivensis is estimated to have diverged from Petaurista spp., its sister taxon, between 18.8 – 12.4 Ma, the oldest boundary overlapping with the earliest record of the genus Miopetaurista (18 – 17 Ma). Perhaps not surprisingly, the skeletons of both genera show little differences. Sciurids are often regarded as a morphologically conservative group and flying squirrels are no exception having experienced few morphological changes for almost 12 million years.
Isaac Casanovas-Vilar, Joan Garcia-Porta, Josep Fortuny, Óscar Sanisidro, Jérôme Prieto, Marina Querejeta, Sergio Llácer, Josep M Robles, Federico Bernardini, and David M Alba. 2018. Oldest Skeleton of A Fossil Flying Squirrel Casts New Light on the Phylogeny of the Group. eLife. 7; e39270 DOI: 10.7554/eLife.39270.001
Oldest fossil of a flying squirrel sheds new light on its evolutionary tree
bit.ly/2Eaqv3f via @elife @EurekAlert
bit.ly/2Eaqv3f via @elife @EurekAlert
phys.org/news/2018-10-oldest-fossil-squirrel-evolutionary-tree.html via @physorg_com