Wednesday, July 18, 2018

[Botany • 2018] Thelocactus tepelmemensis (Cactaceae) • A Distinctive New Species of Thelocactus from Oaxaca, Mexico


Thelocactus tepelmemensis T.J. Davis, H.M. Hern., G.D. Starr & Gómez-Hin.

in Davis, Hernández, Starr & Gómez-Hinostrosa, 2018.
Tepelmeme Cliff Cactus  ||  DOI: 10.11646/phytotaxa.361.1.10 

Abstract 
Thelocactus tepelmemensis, a distinctive new species of Cactaceae from northern Oaxaca, Mexico, is described and illustrated. The new species is closest to T. leucacanthus but differs significantly from this and other species in the genus by a combination of morphological characters: smaller, red-purple flowers; stems with ribs consistently vertical; lower number of spines per areole, these being usually shorter; ovoid fruit; and seeds with conjunct micropyle. The new species is found in a narrow canyon growing on steep limestone rock faces protected from direct afternoon sun. The only known population appears to be locally common but geographically restricted. 

Keywords: endemic, Oaxaca, Tehuacán-Cuicatlán Biosphere Reserve 



Figure 2. Thelocactus tepelmemensis (body, flower, and fruit) and its habitat.
A. Caespitose individual with several lateral stems (Type). B. Vertical limestone wall with several individuals. C. External aspect of a flower (above); dissected flower showing the internal perianth segments, the stamens, and the gynoecium (middle); and, semi-mature fruit with persistent perianth (below). Voucher: H.M. Hernández et al. 4128 (MEXU).

Figure 1. Thelocactus tepelmemensis. A. Stem with flower. B. Areoles. C. Flower (lateral view and dissected). D. Fruit. Voucher: H.M. Hernández et al. 4128 (MEXU). Drawn by Albino Luna.

Thelocactus tepelmemensis T.J. Davis, H.M. Hern., G.D. Starr, and Gómez-Hin., sp. nov. 

Diagnosis:— Similar to Thelocactus leucacanthus, but differing in having a lower number of spines per areole, these being poorly differentiated into radials and centrals (vs. more and readily differentiated spines); by the much smaller, red-purple flowers (vs. larger yellow or magenta flowers); and, the conjunct seed micropyle lying inside the hilum border (vs. disjunct micropyle lying outside border). 

Type:— MEXICO. Oaxaca, municipality Tepelmeme, 17 January 2018 (fl., fr.), H.M. Hernández et al. 4128 (holotype: MEXU 1471315!; isotypes: DES!, MEXU 1471316!). (Figures 1–3)

....

Etymology:— The specific name refers to the community of Tepelmeme Villa de Morelos in whose territory the new species is currently known. 
The suggested English (Tepelmeme cliff cactus) and Spanish (Biznaga de acantilado de Tepelmeme) names refer to the species’ cliff habitat and the community of Tepelmeme Villa de Morelos.


Tristan J. Davis, Héctor M. Hernández, Greg D. Starr and Carlos Gómez-Hinostrosa. 2018. A Distinctive New Species of Thelocactus (Cactaceae) from Oaxaca, Mexico. Phytotaxa. 361(1);  115–122. DOI: 10.11646/phytotaxa.361.1.10 


Resumen: Se describe e ilustra Thelocactus tepelmemensisuna nueva especie de Cactaceae del norte de Oaxaca, México. La nueva especie está cercanamente relacionada a T. leucacanthus, pero difiere de ésta y otras especies del género por una combinación de caracteres morfológicos, en particular por tener flores más pequeñas, de color rojo-púrpura; los tallos con costillas consistentemente verticales; el número más bajo de espinas por areola, siendo éstas usualmente más cortas; el fruto ovoideo; y las semillas con el micrópilo conjunto. La nueva especie se localiza en un cañón estrecho creciendo sobre paredes verticales de calizas protegidas del sol vespertino. La única población conocida parece ser relativamente densa, pero restringida geográficamente. 

Palabras Clave: endémica, Oaxaca, Reserva de la Biosfera Tehuacán-Cuicatlán

[Herpetology • 2018] Sinomicrurus houi • A New Species of the Genus Sinomicrurus Slowinski, Boundy & Lawson, 2001 (Squamata: Elapidae) from Hainan Province, China


Sinomicrurus houi Wang, Peng & Huang, 2018  

in Peng, Wang, Ding, Zhu, Luo, et al., 2018.
Hou’s Coral Snake || DOI: 10.16373/j.cnki.ahr.170090 

Abstract 
A new species of the coral snake genus Sinomicrurus is described based on four specimens from southern Hainan Island (three specimens from Tianchi, Jianfengling National Nature Reserve, one specimen from Diaoluoshan National Nature Reserve), Hainan Province, China. Morphologically, the new species is rather similar to Sinomicrurus kelloggi. However, it is distinct from S. kelloggi by the pattern on the head, the head length, head length/width, the number of infralabial scales, number of bands on dorsal body, and number of blotches on the belly.

Keywords: Hainan; morphology; taxonomy; Sinomicrurus kelloggiSinomicrurus houi sp. nov.

 Figure 5 Sinomicrurus houi sp. nov. preyed on juveniles of Dinodon rufozonatum in captivity.
Photo by Hang Yang and Wei Li.

Figure 3 Dorsal head views of Sinomicrurus houi sp. nov.: holotype HUM20170001 (A), paratypes Re5410, CIB108251, HUM20170004 (B, C, D), morphological transition type from Vietnam (Orlov et al., 2003) and Yunnan (Sun et al., 2016) (E, F)
and typical Sinomicrurus kelloggi from Yunnan Province (Wang et al., 2015) and Anhui (Chen et al., 2013). (G, H). 

Photos by Lifang Peng and Diancheng Yang (A, B, C, D).

Sinomicrurus houi sp. nov. Wang, Peng and Huang  
Suggest English name: Hou’s coral snake. 
Suggest Chinese name: 海南华珊瑚蛇 (Hǎi Nán Huá Shān Hú Shé).

Etymology: The species name is a patronym honoring Mian HOU (Sichuan Normal University, China), a modern herpetological enthusiast and naturalist. He has been contributing substantially to the taxonomy and life history of amphibians and reptiles for 20 years. He collected 3 of the 4 type specimens. 

Diagnosis: Sinomicrurus houi sp. nov. differs from the known five congeners by a combination of the following characters: 1) dorsal scale rows (DSC) 15: 15: 15, smooth throughout; 2) ventrals (VL) 173–183; 3) subcaudals (SC) 27–38; 4) head relatively elongated, head length (HL) 2.0–2.1 times as long as head width (HW); 5) no loreal; 6) supralabials (SL) 7/7, infralabials (IL) 7/7; 7) dorsal surface scarlet, with 16–19 edged yellowish black bands on trunk of body, 2–4 on tail; 8) numbers of ventral spots 34–42; 9) dorsum of head having a narrow white broadwise band in the forefront of head (covering almost all the 3rd, 4th, 5th, 6th supralabials, preoculars, and continuing through forefront prefrontals) and two symmetric white stripes appearing a Chinese symbol for the figure eight (“ 八 ”, from both sides of frontal to neck sides and gradually widening); 10) maxillary teeth behind the fangs present.
....

Figure 4 The habitat of Sinomicrurus houi sp. nov. on Tianchi, Jianfengling National Nature Reserve, Ledong County: A: The holistic habitat; B and D: the microhabitat; C: The microhabitat on the side of a stream where S. houi sp. nov. was found hunting.
Photos by Mian Hou. 

Distribution The new species is currently known from the National Nature Reserves of Diaoluoshan, Jianfengling and Wuzhishan (Chu and Huang, 1990; Zhao, 2004; Wang, 2014), Hainan Province, China.

Natural History Sinomicrurus houi sp. nov. is a nocturnal terrestrial snake, living in the forest floor of montane rain forest, usually hidden in deciduous or humic layers very close to streams or ditches. It feeds primarily on snakes, consuming small snakes and the juveniles of snakes which live in the same habitats, such as Indotyphlops braminus, Argyrophis diardii, Hebius popei and H. boulengeri etc., presumably they also prey on grass lizards and skinks, and may also feed on the sleeping juveniles of Acanthosaura lepidogaster and Pseduocalotes microlepis resting on the roots of bushwoods. In captivity, they catch actively and feed on juveniles of Dinodon rufozonatum (Figure 5), Xenochrophis flavipunctatus, Pantherophis guttatus and skinks).

 Lifang Peng, Lijun Wanf, Li Ding, Yiwu Zhu, Jian Luo, Diancheng Yang, Ruyi Huang, Shunqing Lu and Song Huang. 2018. A New Species of the Genus Sinomicrurus Slowinski, Boundy and Lawson, 2001 (Squamata: Elapidae) from Hainan Province, China. Asian Herpetological Research. 9(2); 65-73. DOI: 10.16373/j.cnki.ahr.170090

[Ichthyology • 2018] Spectrolebias gracilis • A New Miniature Cryptic Species of the Seasonal Killifish Genus Spectrolebias (Cyprinodontiformes, Aplocheilidae) from the Tocantins River basin, central Brazil


Spectrolebias gracilis  Costa & Amorim, 2018 


Abstract
The miniature seasonal killifish Spectrolebias costae, first described for the middle Araguaia River basin, has been also recorded from two areas in the middle Tocantins River basin, from where male specimens exhibit some differences in their colour pattern. Analyses directed to species delineation (GMYC and bPTP), using a fragment of the mitochondrial gene COI, strongly support two species, S. costae from the Araguaia River basin and a new species from the Tocantins River basin. Spectrolebias gracilis sp. n. is described on the basis of specimens collected from two localities separated by about 530 km, Canabrava River floodplains near Alvorada do Tocantins and Tocantins River floodplains near Palmeirante. Field inventories were unsuccessful in finding additional populations in the region, which is attributed to the high environmental degradation, including several large dams that have permanently inundated typical killifish habitats. Spectrolebias gracilis is member of a clade also including S. costae, S. inaequipinnatus, and S. semiocellatus, diagnosed by having the dorsal and anal fins in males with iridescent dots restricted to their basal portion, caudal fin in males hyaline, and caudal-fin base with two pairs of neuromasts. Within this clade, a single miniaturisation event is supported for the most recent common ancestor of the subclade comprising S. costae and S. gracilis, which differ from other congeners by reaching only about 20 mm standard length as maximum adult size.

Key Words: Amazon, Biodiversity conservation, Integrative taxonomy, Miniaturization, Molecular taxonomy, Species delimitation


Taxonomic accounts
Spectrolebias gracilis sp. n.

Diagnosis: Spectrolebias gracilis is member of a clade endemic to the Araguaia-Tocantins River System, also including S. costae, S. semiocellatus Costa & Nielsen, 1997 and S. inaequipinnatus Costa & Brasil, 2008, and morphologically diagnosed by: dorsal and anal fins in males with iridescent dots restricted to the basal portion of fins (vs. scattered over the whole fin), caudal fin in males hyaline (vs. variably coloured, usually dark red or grey), caudal-fin base with two pairs of neuromasts (vs. one). Spectrolebias gracilis is similar to S. costae and distinguished from S. semiocellatus and S. inaequipinnatus by having dorsal fin rounded in males (vs. pointed), dark brown to black pigmentation on the flank in males (vs. light brownish grey), and a subdistal bright blue stripe on the dorsal and anal fins in males (vs. subdistal bright blue absent). Spectrolebias gracilis differs from S. costae by the iridescent light blue colour pattern in males, comprising the presence of 10–12 small blue spots irregularly arranged on opercle, surrounded by diffuse blue iridescence (Fig. 4; vs. 6–8 small blue spots, usually arranged in three vertical series, contrasting with dark brown colour ground, Fig. 3) and one or two series of dots irregularly arranged on the basal portion of the dorsal fin (Fig. 4; vs. blue dots arranged in single longitudinal row close to fin base, Fig. 3).
....

Figure 4. Spectrolebias gracilis sp. n., UFRJ 6440, holotype, male, 19.2 mm SL; Canabrava floodplains. 

Figure 5. Spectrolebias gracilis sp. n., UFRJ 6441, paratype, female, 17.8 mm SL; Canabrava floodplains.

Etymology: From the Latin gracilis, meaning thin, referring to the thin body of the small-sized new species.

Distribution and habitat: Spectrolebias gracilis is known from temporary pools of two localities of the middle Tocantins River basin, central Brazil (Fig. 6). In both localities pools were shallow, about 80 cm in deeper places, and densely occupied by aquatic vegetation.


Figure 3. Specrolebias costae, UFRJ 3549, male, 18.8 mm SL; das Mortes River floodplains.


Wilson J. E. M. Costa and Pedro F. Amorim. 2018. A New Miniature Cryptic Species of the Seasonal Killifish Genus Spectrolebias from the Tocantins River basin, central Brazil (Cyprinodontiformes, Aplocheilidae).  Zoosystematics and Evolution. 94(2): 359-368.  DOI: 10.3897/zse.94.28085

[Botany • 2018] Ptilotus yapukaratja (Amaranthaceae) • A New Species from the Gascoyne Bioregion of Western Australia


Ptilotus yapukaratja R.W.Davis & T.Hammer

in Davis & Hammer, 2018.  

Ptilotus yapukaratja. plant in situ, showing habit and habitat.  
Image by K. Millet from K. Millet 346. 

Ptilotus yapukaratja R.W.Davis & T.Hammer, sp. nov. 

Diagnostic features: Ptilotus yapukaratja can be distinguished from all other Ptilotus R.Br. species by the following combination of characters: a rigid habit, glabrous incurved leaves, bracts longer than bracteoles, two fertile stamens, an excentrically placed style on the ovary, and a hairy ovary.
....


Ptilotus yapukaratja. a close-up showing an inflorescence with an open flower.
Image by K. Millet from K. Millet 346.

Distribution and habitat: Currently only known from north of Lorna Glen Station, where it is found at the base of breakaways on shallow rocky slopes in open scrub on brown clayey-sandy soils. 

Conservation status: To be listed as Priority One under Conservation Codes for Western Australian Flora (M. Smith perscomm.). Ptilotus yapukaratja is only known from the one remote location north of Lorna Glen Station. 

Etymology. The epithet derives from the Matuwa words yapu (rock) and karatja (belonging to), referring to the rocky habitat where the species occurs.


Robert W. Davis and Timothy A. Hammer. 2018. Ptilotus yapukaratja (Amaranthaceae), A New Species from the Gascoyne Bioregion of Western Australia. Nuytsia: The Journal of the Western Australian Herbarium. 29; 157–160. 

    

Tuesday, July 17, 2018

[Herpetology • 2018] Phylogenomics of Montane Frogs of the Brazilian Atlantic Forest is Consistent with Isolation in Sky Islands Followed by Climatic Stability


Brachycephalus investigated in the present study. 
 
Brachycephalus brunneusB. izecksohni; B. fuscolineatus B. auroguttatus


in Pie, Faircloth, Ribeiro, et al., 2018.

Abstract
Despite encompassing a relatively small geographical area, montane regions harbour disproportionately high levels of species diversity and endemism. Nonetheless, relatively little is known about the evolutionary mechanisms that ultimately lead to montane diversity. In this study, we used target capture of ultraconserved elements to investigate the phylogenetic relationships and diversification patterns of Melanophryniscus (Bufonidae) and Brachycephalus (Brachycephalidae), two frog genera that occur in sky islands of the southern Atlantic Forest of Brazil. Specifically, we tested whether diversification of montane species in these genera could be explained by a single climatic shift leading to isolation in sky islands, followed by climatic stability that maintained populations in allopatry. In both genera, the topologies inferred using concatenation and coalescent-based methods were concordant and had strong nodal support, except for a few recent splits, which nevertheless tended to be supported by more informative loci. Estimation of divergence time of a combined dataset using both genera is consistent with a concordant timing of their diversification. These results support the scenario of diversification by isolation in sky islands and suggest that allopatry attributable to climatic gradients in montane regions is an important mechanism for generating species diversity and endemism in these regions.

Brachycephalus, coalescent, Melanophryniscus, target enrichment, ultraconserved elements

Figure 1. Examples of the species of Brachycephalus investigated in the present study.
E, Brachycephalus brunneus. F, Brachycephalus izecksohni. G, Brachycephalus fuscolineatus. H, Brachycephalus auroguttatus.
Photographs by L.F. Ribeiro.


Marcio R. Pie, Brant C. Faircloth, Luiz F. Ribeiro, Marcos R. Bornschein and John E Mccormack. 2018. Phylogenomics of Montane Frogs of the Brazilian Atlantic Forest is Consistent with Isolation in Sky Islands Followed by Climatic Stability. Biological Journal of the Linnean Society. bly093.   DOI: 10.1093/biolinnean/bly093   

Marcio R. Pie, Brant C Faircloth, Luiz Fernando Ribeiro, Marcos R. Bornschein and John McCormack. 2018. Phylogenomics of montane frogs of the Brazilian Atlantic Forest supports a scenario of isolation in sky islands followed by relative climatic stability. bioRxiv. 226159.  DOI: 10.1101/226159


[Botany • 2018] Orobanche javakhetica (Orobanchaceae) • A New Species from the Caucasus (Armenia)


Orobanche javakhetica Piwow., Ó. Sánchez & Moreno Mor.

in Piwowarczyk, Pedraja, Moral, et al., 2018. 

Abstract
Orobanche javakhetica (Orobanchaceae) is described as a new, probably endemic, species from the Lesser Caucasus in Armenia. It grows on a subalpine meadow, where it parasitises Lomelosia caucasica (Dipsacaceae). The newly-described species is very characteristic and different from other known Orobanche, however some morphological similarity may exist with species from the Orobanche subsect. Curvatae, particularly with species of the Orobanche series Krylowianae. A detailed description, illustrations, a comparison with the most similar species with identification key, and phylogenetic analysis are provided.

Keywords: Lomelosia caucasica, Javakheti range, Lesser Caucasus, holoparasites, taxonomy, Orobanche, plant parasites, Eudicots


FIGURE 2. Inflorescences and general habit of Orobanche javakhetica.

 Photos by Renata Piwowarczyk.

Orobanche javakhetica Piwow., Ó. Sánchez & Moreno Mor., sp. nov.  

Etymology:― The epithet ‘javakhetica’ derives from the name of the Javakheti mountain range (Dzhavakheti range), where the new species was discovered.


Renata Piwowarczyk, Óscar Sánchez Pedraja, Gonzalo Moreno Moral , Magdalena Denysenko-Bennett and Grzegorz Góralski and Dagmara Kwolek. 2018. Orobanche javakhetica (Orobanchaceae): A New Species from the Caucasus (Armenia). Phytotaxa. 360(2); 135–144. DOI:  10.11646/phytotaxa.360.2.5
Orobanche javakhetica Piwow., Ó. Sánchez & Moreno Mor. - nowy gatunek dla nauki z Armenii. Dzisiaj się ukazała publikacja w Phytotaxa,  mapress.com/j/pt/article/view/phytotaxa.360.2.5
Rośnie na około 2230 m n.p.m. i pasożytuje na Lomelosia caucasica (Dipsacaceae). Nazwę nadałam od pasma górskiego Javakheti, gdzie został znaleziony.

Renata Piwowarczyk

[Botany • 2018] Vaccinium cebuense • Taxonomic Novelties from Cebu: A New Species of Vaccinium (Ericaceae) and A New Record of Phaius (Orchidaceae) for the Philippines


Vaccinium cebuense  

in Salares, Obico, Ormerod, et al., 2018. 

Abstract
Vaccinium cebuense (Ericaceae) from Nug-as forest (Alcoy) and the Central Cebu Protected Landscape (Balamban), two of the last remaining forested areas of Cebu Island, Philippines, is here described as a new species. This species is unique among the known species of this genus in displaying a unique combination of characters: leaves with marginal glands that are spaced along the entire length of the leaf, anthers with distinct and recurved dorsal spurs, and petioles that are adaxially grooved. Our fieldwork in Nug-as also resulted in the discovery of Phaius reflexipetalus (Orchidaceae), a new record for the Philippines previously only known from Borneo. These and other recent taxonomic novelties emphasize the conservation importance of the few and small remaining forests of Cebu.

Keywords: Epidendroideae, Phaius sect. Pesomeria, Taxonomy, Vaccinium sect. Bracteata, Visayas, Monocots



Val B. Salares, Jasper John A. Obico, Paul Ormerod, Julie F. Barcelona and Pieter B. Pelser. 2018. Taxonomic Novelties from Cebu: A New Species of Vaccinium (Ericaceae) and A New Record of Phaius (Orchidaceae) for the Philippines. Phytotaxa. 360(3); 255–262.  DOI: 10.11646/phytotaxa.360.3.5


A new species of #Philippines #Vaccinium from #Cebu and a new country record of #Phaius: recent taxonomic novelties emphasize #conservation importance of the few remaining forest fragments of Cebu.  ||  @UCNZscience @UCNZbiology #CDFP #Ericaceae #Orchidaceae  biotaxa.org/Phytotaxa/article/view/phytotaxa.360.3.5 …


[Entomology • 2018] Revision of the Genus Lamprima Latreille, 1804 (Coleoptera: Lucanidae)


FIGURES 97–105.  Habitus photographs of Lamprima Latreille, 1804, type material in Australian collections: 
97, L. krefftii W.J. MacLeay, 1871, holotype; 98, L. latreillii W.S. MacLeay, 1819, lectotype; 99, L. latreillii W.S. Macleay, paralectotype; 
100, L. latreillii sericea W.J. Macleay, 1885, lectotype; 101, L. latreillii sericea W.J. Macleay, paralectotype; 102, L. mandibularis W.J. Macleay, 1885, lectotype. 
 103, L. mandibularis W.J. Macleay, 1885, paralectotype; 104, L. minima W.J. Macleay, 1885, holotype; 105, L. nigripennis W.J. Macleay, 1885, holotype. 
Figures 98–105 courtesy of Cate Lemann, Commonwealth Scientific and Industrial Research Organisation, 2017. All images to same scale. 


FIGURES 45–53. Male Lamprima species, mandibles, lateral view:
45, L. adolphinae (Gestro, 1875), elongate mandible form; 46, L. adolphinae, short mandible form; 47, L. aenea (Fabricius, 1792); 48, L. aurata Latreille, 1804, elongate mandible form, northern Queensland; 49, L. aurata, New South Wales, large male; 50, L. aurata, New South Wales, small male; 51, L. aurata, Western Australia; 52, L. imberbis Carter, 1926, holotype; 53, L. insularis W.J. Macleay, 1885. 
Figure 52 courtesy Peter Hudson, South Australian Museum.

in Reid, Smith & Beatson, 2018. 

Abstract
The genus Lamprima Latreille, 1804 (Coleoptera: Lucanidae: Lampriminae: Lamprimini), is revised. Five species are recognised: one in New Guinea (L. adolphinae (Gestro, 1875)), two on isolated western Pacific islands (L. aenea Fabricius, 1792: Norfolk Island; L. insularis W.J. Macleay, 1885: Lord Howe Island), one in northeastern New South Wales (L. imberbis Carter, 1926) and a common widespread species in eastern and southern Australia, L. aurata Latreille, 1817. Lamprima aurata varies considerably morphologically and many of the different forms encompassed by this variation have been described as species. Our study of morphology does not support this classification. Therefore, Lamprima aurata is designated a senior synonym of the following 24 names: L. cuprea Latreille, 1817; L. latreillii W.S. MacLeay, 1819 (new synonym); L. pygmaea W.S. MacLeay, 1819 (new synonym); L. fulgida Boisduval, 1835; L. micardi Reiche, 1841 (new synonym); L. rutilans Erichson, 1842; L. splendens Erichson, 1842; L. viridis Erichson, 1842; L. nigricollis Hope in Westwood, 1845 (new synonym); L. purpurascens Hope in Westwood, 1845 (new synonym); L. sumptuosa Hope in Westwood, 1845 (new synonym); L. tasmaniae Hope in Westwood, 1845 (new synonym); L. varians Burmeister, 1847 (new synonym); L. cultridens Burmeister, 1847 (new synonym); L. amplicollis Thomson, 1862 (new synonym); L. krefftii W.J. MacLeay, 1871 (new synonym); L. violacea W.J. Macleay, 1885 (new synonym); L. mandibularis W.J. Macleay, 1885 (new synonym); L. sericea W..J Macleay, 1885 (new synonym); L. nigripennis W.J. Macleay, 1885 (new synonym); L. minima W.J. Macleay, 1885 (new synonym); L. mariae Lea, 1910; L. coerulea Boileau, 1913 (new synonym); L. insularis Boileau, 1913 (new synonym). Lamprima adolphinae is a senior synonym of L. bohni (Darge & Séguy, 1953) (new synonym). Lamprima schreibersi Hope in Westwood, 1845, is an unnecessary nomen novum for L. aenea redescribed by Schreibers in 1802 from the same material as Fabricius, and therefore an objective synonym of L. aenea. Lamprima puncticollis Dejean, 1833, L. coerulea Hope in Westwood, 1845, and L. insularis Hope in Westwood, 1845, are nomina nuda, the last two names first made available by Boileau in 1913. The five Lamprima species are redescribed and recommendations made for their conservation. Type specimens of the species of Lamprima described by William Sharpe MacLeay and William John Macleay are illustrated for the first time. Lectotypes are designated for Lamprima insularis, L. latreillii, L. latreillii sericea, and L. mandibularis.

Keywords: Coleoptera, stag beetle, synonymy, morphology, nomenclature, polymorphism, insect trade, island endemism, distribution


Chris A.M. Reid, Kindi Smith and Max Beatson. 2018. Revision of the Genus Lamprima Latreille, 1804 (Coleoptera: Lucanidae). Zootaxa. 4446(2); 151–202. DOI: 10.11646/zootaxa.4446.2.1

[Botany • 2018] Agave maria-patriciae (Polycephalae Group: Asparagaceae) • A New Species from Central Coastal Veracruz, Mexico


Agave maria-patriciae Cházaro & Arzaba

in Arzaba-Villalba, Cházaro-Basáñez & Viveros-Colorado, 2018

Abstract
Agave maria-patriciae Cházaro & Arzaba is described and illustrated here as a new species from the central coast of the state of Veracruz in Mexico. It belongs to the subgenus Littaea and Polycephalae group, which contains tropical and subtropical species from the American continent. Agave maria-patriciae is closely related to A. pendula, but differs from the latter by having smaller rosettes, shorter and suberect stems and smaller and subsessile flowers. It is only known from a small population in the oak forest from the mountains of Sierra de Monte de Oro in the municipality of Alto Lucero in eastern Mexico.

Keywords: Agave, endemic, new species, Polycephalae, Veracruz, Monocots

FIGURE 3. Agave maria-patriciae:
 A. habit, B. Flower, C. unripe fruits, D. detail of the rosette, E. leaf with central stripe.

FIGURE 2. Agave maria-patriciae.
A. Flower, B. Tepals, C. Sagittal view of flower, D. Capsules and bracteole, E. Transversal section of the capsule, F. seed, G. Leaf, H. Denticles at margin, I, J. Habit. Illustration by first author from C. Arzaba et al. 451, XAL—holotype. The numbers beside barscales denote centimeters.

Agave maria-patriciae Cházaro & Arzaba sp. nov. 

 Agave maria-patriciae is most similar to A. pendula by sharing lanceolate to oblong leaves with a central yellow stripe, but it differs in its shorter leaves, stems and floral scape; presence of continuous reddish margins along the leaves, thicker terminal spine and larger denticles, its smaller and succulent flowers with reflexed and not broadly cucullate tepals and subsessile capsules. 

Type:— MEXICO. Veracruz: municipality of Alto Lucero, summit of Cerro La Bandera, NE of La Yerbabuena village, 660 m, 07 January 2016 (fl. & fr.), C. Arzaba 451 et al. (holotype XAL!; isotypes CHAPA!, MEXU!).
....

Etymology:— The species name is dedicated to Mrs. María Patricia Hernández, wife of the second author, who in the 1980s and early 1990s was a great companion in numerous field trips even to remote areas. As a result, several hundreds of botanical specimens are labeled as “M. Cházaro & P. Hernández”, deposited in the main herbaria of Mexico and the USA. She also mounted hundreds of exsiccata at the WIS and IBUG herbaria, as well as coauthored several papers on succulent plants of Mexico.


Carlos Arzaba-Villalba, Miguel Cházaro-Basáñez and César Viveros-Colorado. 2018. Agave maria-patriciae (Polycephalae Group: Asparagaceae), A New Species from Central Coastal Veracruz, Mexico. Phytotaxa. 360(3); 263–268.  DOI: 10.11646/phytotaxa.360.3.6


Resumen: Agave maria-patriciae Cházaro & Arzaba es descrita e ilustrada como una nueva especie de la costa central del estado de Veracruz en México. Pertenece al subgénero Littaea y al grupo Polycephalae, el cual contiene especies tropicales y subtropicales del continente americano. A. maria-patriciae está estrechamente relacionado con A. pendula pero difiere de ésta última al poseer rosetas más pequeñas, tallos más cortos y suberectos y flores de menor tamaño y subsésiles. Solo se conoce de una pequeña población en bosque de encino en la Sierra de Monte de Oro, en el municipio de Alto Lucero, en el oriente de México. 
Palabras-clave: Agave, endémica, nueva especie, Polycephalae, Veracruz

[Herpetology • 2018] Selvasaura brava • Systematics of Neotropical Microteiid Lizards (Gymnophthalmidae, Cercosaurinae), with the Description of A New Genus and Species from the Andean Montane Forests


 Selvasaura brava
Moravec, Šmíd, Štundl & Lehr, 2018


Abstract
Cercosaurine lizards (subfamily Cercosaurinae of the family Gymnophthalmidae) represent a substantial component of the reptile fauna in the Neotropics. Several attempts have been made to reconstruct the phylogenetic relationships within this group, but most studies focused on particular genera or regions and did not cover the subfamily as a whole. In this study, material from the montane forests of Peru was newly sequenced. In combination with all cercosaurine sequences available on GenBank, an updated phylogeny of Cercosaurinae is provided. Monophyly was not supported for three of the currently recognised genera (Echinosaura, Oreosaurus, and Proctoporus). The genus Proctoporus is formed by five monophyletic groups, which should be used in future taxonomic revisions as feasible entities. Recognition of two previously identified undescribed clades (Unnamed clades 2 and 3) was supported and yet another undescribed clade (termed here Unnamed clade 4), which deserves recognition as an independent genus, was identified herein. Selvasaura brava, a new genus and new species of arboreal gymnophthalmid lizard is described from the montane forests of the Pui Pui Protected Forest, Provincia de Chanchamayo, Región Junín, Peru. The new species is characterised by its small size (SVL 42.1–45.9 mm), slender body, smooth head shields, presence of paired prefrontal shields, fused anteriormost supraocular and anteriormost superciliary shields, transparent not divided lower palpebral disc, slightly rugose subimbricate rectangular dorsal scales in adults (slightly keeled in juveniles), distinctly smaller but non-granular lateral scales, smooth squared to rectangular ventral scales, and hemipenial lobes large, distinct from the hemipenial body. Phylogenetic affinities of the new genus to the other cercosaurine genera, as well as basal phylogenetic relationships between the other cercosaurine genera remain unresolved.

Keywords: Andes, arboreality, phylogeny, reptile diversity, Selvasaura gen. n., Selvasaura brava sp. n., taxonomy

Taxonomy
Family Gymnophthalmidae Fitzinger, 1826
Subfamily Cercosaurinae Gray, 1838

Genus Selvasaura gen. n.
Unnamed clade 3 (in Torres-Carvajal et al. 2016)

Type species: Selvasaura brava sp. n.

Diagnosis: Phenotypic synapomorphies are not known for this genus. Morphologically, Selvasaura gen. n. can be distinguished from all other genera of Cercosaurinae by the combination of the following characters: lower palpebral disc transparent, not divided (divided in Andinosaura, Euspondylus, Gelanesaurus, Oreosaurus, Petracola, Riama, and most Anadia and Placosoma species; opaque in Pholidobolus); dorsal scales slightly rugose (smooth in Anadia; keeled in Cercosaura; strongly keeled and tuberculate in Echinosaura, Gelanesaurus, Neusticurus, Potamites; minute tubercles on posterior dorsal scales in Placosoma); lateral scales distinctly smaller than dorsal scales (lateral scales not distinctly reduced in size in Macropholidus); lateral scales adjacent to ventrals non-granular (granular in Proctoporus) (see e.g., Oftedal 1974; Cadle and Chuna 1995; Altamirano-Benavides et al. 2013; Kok et al. 2013; Torres-Carvajal and Mafla-Endara 2013; Echevarría et al. 2015; Borges-Nojosa et al. 2016; Chávez et al. 2017; Sánchez-Pacheco et al. 2017b). Genetically, the genus is differentiated from the other cercosaurines by distances given in Table 3 and 4.

Definition: (1) head shields smooth; (2) frontoparietal and parietal shields paired; (3) frontonasal, frontal and interparietal shields single; (4) prefrontal shields present; (5) lower palpebral disc transparent, not divided; (6) loreal shield present; (7) scale organs on labials present; (8) anteriormost supraocular and anteriormost superciliary shields fused; (9) dorsal surface of the tongue covered by scale-like papillae; (10) nuchal scales smooth; (11) dorsal scales rectangular, slightly rugose; (12) ventral scales squared to rectangular, smooth; (13) limbs pentadactyl, digits clawed; (14) femoral pores present in males, absent in females; (15) hemipenial lobes large, distinct from the hemipenial body.

Content: Selvasaura brava sp. n. and undescribed species of Unnamed clade 3 (sensu Torres-Carvajal et al. 2016) whose formal descriptions are underway (see Torres-Carvajal et al. 2016).

Distribution: Peru: Región Junín, Provincia de Chanchamayo, Pui Pui Protected Forest (Selvasaura brava sp. n.); Región San Martin, Provincia Mariscal Cáceres, Laurel (Cercosaurinae sp. 3; Torres-Carvajal et al. 2016). Ecuador: Provincia de Zamora Chinchipe, El Pangui (Cercosaurinae sp. 3; Torres-Carvajal et al. 2016); Provincia de Napo, Wildsumaco Wildlife Sanctuary (Cercosaurinae sp. 3; Torres-Carvajal et al. 2016).

Etymology: The generic name Selvasaura is derived from the Spanish noun ‘selva’ (forest) and the Greek noun σαύρα (lizard; saura is the feminine form) and refers to the habitat (montane rainforest) of the type species.


Figure 6. Holotype of Selvasaura brava sp. n. (MUSM 32738) in life. Photographs by E. Lehr. 

Figure 7. Paratypes of Selvasaura brava sp. n. 
Dorsal (A) and ventral (B) view of adult male (NMP6V 75653) with a detail of an everted hemipenis (C)
D adult female (MUSM 32718) E – juvenile (NMP6V 75655). Note the generally uniform colouration of the female compared to the male and juvenile specimens. Photographs by J. Moravec.

Selvasaura brava sp. n.
 Suggested English name: Brave forest microtegu 
Suggested Spanish name: Microtegu selva brava

Diagnosis: A small gymnophthalmid (SVL 42.1–45.9 mm, n = 4), which can be characterised by the following combination of characters: 1) body slender, slightly depressed, maximum SVL 45.9 mm in males, 42.1 mm in a single female; 2) head relatively short, pointed, about 1.5 times longer than wide; 3) ear opening distinct, moderately recessed; 4) nasals separated by undivided frontonasal; 5) prefrontals, frontal, frontoparietals, parietals, postparietals and interparietal present; 6) parietals slightly longer than wide; 7) supraoculars four, anteriormost fused with anteriormost superciliar; 8) superciliar series complete, consisting of four scales; 9) nasal shield divided above and below or behind the nostril; 10) loreal separated or in contact with second supralabial; 11) supralabials seven; 12) genials in four pairs, first and second pair in contact; 13) collar present, containing 9–11 enlarged scales; 14) dorsals in 33–36 transverse rows, rectangular, nearly twice as long as wide, subimbricate, rugose in adults, slightly keeled in juveniles; 15) ventrals in 22–25 transverse rows, squared to rectangular, smooth, juxtaposed; 16) scales around mid-body 32–34; 17) lateral scales at mid-body reduced in 4–7 lines; 18) limbs pentadactyl, all digits clawed, forelimb reaching anteriorly to third supralabial; 19) subdigital lamellae under Finger IV 14–16, under Toe IV 18–22; 20) femoral pores in males 7–9; 21) four large preanal plate scales; 22) tail about 1.5–1.7 times longer than body (in juveniles); 23) caudals subimbricate, rugose to slightly keeled dorsally in adults, slightly keeled in juveniles, smooth ventrally; 24) lower palpebral disc transparent, undivided; 25) in life, dorsal surface of head, body and limbs light brown with fine dark brown speckling, dorsal surface of tail light brown with a reddish tint or reddish-brown markings; a tan or yellowish brown vertebral stripe bordered laterally by dark brown, vertebral stripe extends on head anteriorly and on tail caudally (inconspicuous in the female); a narrow dirty white to tan dorsolateral line extending on each side from above the tympanum to pelvic region (discontinuous caudally from the level of forelimbs in adults, reaching posterior edge of orbit in some individuals); a narrow dirty white to tan stripe running from above the orbit across parietals and first postparietals up to the neck (connected with the dorsolateral line in some individuals); a narrow white stripe extending from below of orbit to insertion of forelimbs (bordered dorsally by black in juveniles and some adults); minute ocelli-like white spots on flanks (most conspicuous at forearm insertion, absent in some adults); ventrolateral parts of flanks whitish brown; throat and belly creamy white with fine dark grey speckling inside the individual scales (yellowish white with black speckling in juveniles); ventral surfaces of limbs, anal area and tail yellowish white in males and juveniles, white in the female; iris tan with orange tint in males, tan in the female.

Etymology: The species epithet brava is derived from the Spanish adjective bravo (brave, courageous, wild; brava the feminine form) and refers to Río Bravo, the largest river in the area of occurrence of the new species, as well as to the fearless nature of the lizard to share shelter with people.

Distribution, natural history, and threat status: Selvasaura brava sp. n. is known from two localities lying at the northeastern border of the Pui Pui Protected Forest, ca. 18 km (straight airline distance) NW of the town of Satipo (Fig. 1). Both localities are located in the valley of the tributary of Río Bravo (on opposite banks of the tributary) about 500 m (straight distance) from each other. The valley and its slopes are covered by a primary montane rainforest characterized by 15–20 m high canopy and frequent occurrence of bromeliads, ferns, and epiphytic mosses (see also Lehr and Moravec (2017). All specimens of S. brava sp. n. were collected during the day within roofs of provisional camp shacks consisting of dried palm leaves and built by locals on small forest clearings (Fig. 8; MorphoBank picture: M485681). The roofs of the shacks were placed on 1.5–4 m pillars made of tree trunks and stood in an open space fully exposed to sun. The activity of all observed specimens seemed correlated with the intensity of solar radiation. During the sunny hours, the animals emerged from their shelters in the leaf layer, climbed and basked on the roof surface and searched for prey. As agile climbers, the lizards were able to climb up thin vertical tree trunks and jump between the palm leaves. These observations indicate that S. brava sp. n. represents an arboreal heliothermic species. Other gymnophthalmid species found at the type locality in sympatry with S. brava sp. n. included Potamites sp. (not included in the genetic analyses), which inhabited banks of small forest brooks, and Proctoporus sp. 4 (sensu this publication, Fig. 3) collected on the ground in the open clearing. With respect to the sparse data available, we suggest classifying S. brava as “Data Deficient” according to the IUCN red list criteria.

Figure 8. Type locality of Selvasaura brava sp. n. The lizards were active during the day basking and foraging in the leaves of the roof and on the shack pillars. They used the leaves on the roof as a refuge to hide in. Photograph by J. Moravec.

   


Jiří Moravec, Jiří Šmíd, Jan Štundl and Edgar Lehr. 2018. Systematics of Neotropical Microteiid Lizards (Gymnophthalmidae, Cercosaurinae), with the Description of A New Genus and Species from the Andean Montane Forests. ZooKeys. 774: 105-139.  DOI: 10.3897/zookeys.774.25332

[Ichthyology • 2018] Trimma blematium & T. meityae • Two New Species of Blue-eyed Trimma (Pisces; Gobiidae) from New Guinea


Trimma blematium
Winterbottom & Erdmann, 2018 


Abstract
Two new species of Trimma are described from New Guinea, one at the southeastern end at Normanby Island (Milne Bay Province), the other from Cendrawasih Bay, West Papua, on the north-east coast. The dorsal surface of the eye of both species is blue in life, a characteristic not reported elsewhere in the genus. Although the two species look very similar in life, and both occupy similar mesophotic rubble habitats in the 50-70 m depth range, they are separated both genetically (7.7% pairwise genetic distance in COI) and morphologically. Trimma blematium has 16 pectoral fin rays, a branched 5th pelvic fin ray, and 7 papillae in row p, whereas T. meityae has 17–18 pectoral fin rays, an unbranched 5th pelvic fin ray, and 8 papillae in row p. In live specimens, the blue colour over the top of the eyes is much darker in T. blematium than in T. meityae. The type localities are separated by almost 2,000 km (straight-line distance).

Keywords: Pisces, taxonomy, Western Pacific, coral reef gobies, COI gene




 Richard Winterbottom and  Mark V. Erdmann. 2018. Two New Species of Blue-eyed Trimma (Pisces; Gobiidae) from New Guinea.  Zootaxa.  4444(4); 471–483. DOI: 10.11646/zootaxa.4444.4.7

Monday, July 16, 2018

[Botany • 2018] Hippeastrum lunaris & H. mauroi • Two New Critically Endangered Species of Hippeastrum (Amaryllidaceae) from the Brazilian Cerrado


Hippeastrum lunaris Campos-Rocha & Meerow

in Campos-Rocha, Meerow & Dutilh, 2018. 
Abstract
Monographic work on the genus Hippeastrum in Brazil has revealed two new species endemic to the Cerrado biome, here described and illustrated. Hippeastrum lunaris is a species restricted to the region of Chapada dos Veadeiros; H. mauroi is so far found only in Chapada dos Guimarães. Detailed descriptions, illustrations and taxonomic comments on the conservation status of these species are provided, in addition to comparisons with morphologically similar species. An identification key to the species of Hippeastrum occurring in the Brazilian Cerrado is presented, accompanied by photographs of these species in their natural habitats.

Keywords: Endemism, Hippeastreae, taxonomy, threatened species, Monocots




Hippeastrum lunaris Campos-Rocha & Meerow sp. nov. 
 Hippeastrum lunaris is similar to H. morelianum Lemaire (1845: 37) and can be separated readily by underground bulb (vs. exposed) and the paraperigone of free and loose fibrae (vs. fimbrae partially connate). It appears related to H. leucobasis (Ravenna 1978: 90) Dutilh in Meerow et al. (1997: 18) but differs by the staminal filaments shorter than the perigone and its trifid stigma (vs. filaments exceeding the perigone and a capitate stigma in H. leucobasis). 

Type:— BRAZIL. Goiás: Colinas do Sul, campo sujo com mata inundável adjacente, área a ser inundada, 18 December 1996, L.B. Bianchetti 1502 (holotype CEN [photo!]; isotype UB!; UEC!).


Etymology:— The specific epithet refers to the Vale da Lua, to where the species is confined. The area is so named because of its rock formations along the banks of the ribeirão São Miguel, considered similar to lunar craters

FIGURE 2. Hippeastrum lunaris.
 A, B. Flowering plants in habitat. C. Details of leaves and inflorescence. D. Detail of flower.
Photos A: J. Costa. B–D: H. Moreira.

    


FIGURE 5. Hippeastrum mauroi.
 A. Plants flowering ex situ. B. Flower, lateral view. C. Flower, frontal view. A: A. Campos-Rocha & G. Bellozi 1215.
Photos A: A. Campos-Rocha. B, C: M. Peixoto.

Hippeastrum mauroi Campos-Rocha & Dutilh, sp. nov. 

Hippeastrum mauroi is similar to H. puniceum and H. reginae (Linnaeus 1759: 977) Herbert (1821: 31) but can be distinguished from both by its uniflorous inflorescence (vs. 2–4, except rarely one in H. puniceum), different color pattern at the base of the tepals, the paraperigone devoid of fimbrae (vs. fimbrae present), and the style up to 1/2 of the perigone length (vs. 2/3 or more).

 Type:— BRAZIL. Mato Grosso: Chapada dos Guimarães, área de Cerrado ralo próxima ao Parque Nacional da Chapada dos Guimarães; florescimento em cultivo no Jardim Botânico Plantarum, 21 August 2013, A. Campos-Rocha & G. Bellozi 1215 (holotype UEC!).

Etymology:— The specific epithet is in honor of our friend Mauro Peixoto, who collected and introduced us to this and so many other plants new to science. Mauro has a unique knowledge about Brazilian native plants, a result of decades of study and observation in the field, having collaborated actively with various scientists over the years.


 Antonio Campos-Rocha, Alan William Meerow and Julie Henriette Antoinette Dutilh. 2018. Two New Critically Endangered Species of Hippeastrum (Amaryllidaceae) from the Brazilian Cerrado. Phytotaxa. 360(2); 91–102.  DOI: 10.11646/phytotaxa.360.2.1