Saturday, June 23, 2018

[Ornithology • 2017] On Temminck’s Tailless Ceylon Junglefowl, Gallus ecaudatus, and How Darwin denied their Existence


 Lithograph of Gallus ecaudatus, based on specimen RMNH. AVES.224888, by Jean-Gabriel Prêtre prepared c.1806 for an illustrated work in three volumes that Temminck intended to publish on pigeons and Galliformes.

in van Grouw, Dekkers & Rookmaaker, 2017.
Bull. B.O.C. 137(4) 

  Summary
Ceylon Junglefowl was described in 1807 by the Dutch ornithologist Coenraad Jacob Temminck. The specimens he examined were tailless (‘rumpless’) and therefore he named them Gallus ecaudatus. In 1831 the French naturalist René Primevère Lesson described a Ceylon Junglefowl with a tail as Gallus lafayetii (= lafayetii), apparently unaware of Temminck’s ecaudatus. Subsequently, ecaudatus and lafayetii were realised to be the same species, of which G. stanleyi and G. lineatus are junior synonyms. However, Charles Darwin tried to disprove the existence of wild tailless junglefowl on Ceylon in favour of his theory on the origin of the domestic chicken. 


‘The tailless cock inhabits the immense forests of the island of Ceylon’ (Temminck 1813: 268). 

 ‘… but this statement [tailless fowls are wild in Ceylon] … is uterly false’ (Darwin 1868: 259).


Figure 2. Lithograph of Gallus ecaudatus, based on specimen RMNH. AVES.224888, by Jean-Gabriel Prêtre prepared c.1806 for an illustrated work in three volumes that Temminck intended to publish on pigeons and Galliformes. Only the volume on pigeons was published, in 1808, and the two volumes on Galliformes never appeared due to a confict between Temminck and the French illustrator of the frst volume, Pauline Knip (Dickinson et al. 2010). Instead, Temminck later published Histoire naturelle générale des pigeons et des gallinacés in three volumes (1813–15) without any colour illustrations. The reference ‘Gall. v. 1. pl. Enl.’ in Temminck’s published catalogue (1807) refers to the frst of the two unpublished volumes on Galliformes, which would have been vol. 2 of the complete work (Naturalis Biodiversity Center, Leiden)


Hein van Grouw, Wim Dekkers and Kees Rookmaaker. 2017. On Temminck’s Tailless Ceylon Junglefowl, and How Darwin denied their Existence. Bull. B.O.C. 137(4); 261-271



[Botany • 2017] Fimbristylis fusiformis (Cyperaceae) • Taxonomy and Phylogenetic Position of A New Species from Thailand


Fimbristylis fusiformis Wangwasit & D.A.Simpson

in Wangwasit, Muasya, Chantaranothai & Simpson, 2017.

Abstract:
Fimbristylis fusiformis, an unusual new species of Cyperaceae from Thailand, is described and illustrated. This taxon has a single terminal spikelet per culm with a semi-distichous glume arrangement, bisexual flowers that lack perianth parts, and pistil with persistent style whose base is slightly swollen and trigonous nutlets with pubescent ribs. Phylogenetic reconstruction using ITS sequence data places this taxon in Abildgaardieae and sister to the rest of Fimbristylis. The species has a conservation status of Least Concern (LC).

Keywords: Conservation Status; Fimbristylis; Phylogeny; Taxonomy



Fig. 2 Fimbristylis fusiformis Wangwasit & D.A.Simpson.
a. Plants in habitat; b. close-up of spikelet. — Photos by D.A. Simpson.

Fimbristylis fusiformis Wangwasit & D.A.Simpson, sp. nov.

Superficially similar to F. pauciflora R.Br. but distinguished by the glumes 6.5–8.5 mm long (vs 2.5–3 mm long in F. pauciflora), nutlets fusiform, fimbriate at apex and base, with 3 longitudinal costae (vs nutlets obovate and glabrous in F. pauciflora). — Type: K. Wangwasit 080927-17 (holo K; iso BK, KKU), Thailand, Ubon Ratchathani, Pha Taem National Park, 27 Sept. 2008.

Etymology. Named after the shape of the nutlets.


 K. Wangwasit, A.M. Muasya, P. Chantaranothai and D.A. Simpson. 2017. Taxonomy and Phylogenetic Position of Fimbristylis fusiformis, A New Species of Cyperaceae from Thailand.  Blumea - Biodiversity, Evolution and Biogeography of Plants. 62(1); 47-52.  DOI: 10.3767/000651917X695209
repository.naturalis.nl/document/645595


[Mollusca • 2017] Erhaia wangchuki Erhaia Davis & Kuo (Gastropoda, Rissooidea, Amnicolidae) also in Bhutan


Erhaia wangchuki
Gittenberger, Sherub & Stelbrink, 2017


Abstract
The occurrence of at least one species of Erhaia in Bhutan, viz. Erhaia wangchuki sp. n., is confirmed by DNA sequencing. A second unnamed species from Bhutan, that might be congeneric, is known from only a single shell. According to the molecular analysis, E. wangchuki is most closely related to a still undescribed Erhaia species from China. These two species together with E. jianouensis and Akiyoshia kobayashii, both also from China, form a well supported clade. Awaiting additional molecular data, the apparent inconsistency regarding Erhaia versus Akiyoshia is not dealt with here. The extant true sister species of E. wangchuki could be among the four SE Himalayan species from Bhutan and Nepal that are classified with Erhaia on the basis of conchological data only.

Keywords: ErhaiaAkiyoshia, 16S, taxonomy, distribution, Nepal, Bhutan

Figure 1. Erhaia wangchuki sp. n., sequenced paratype; scale bar 0.5 mm (photographs by B.S.); Bhutan, district Wangdue Phodrang, Gangchhu, 2883 m alt.; 27°26'N, 90°11'E; Jigme Wangchuk leg. 21.iii.2015.

Figure 1. Erhaia wangchuki sp. n., sequenced paratype; scale bar 0.5 mm (photographs by B.S.); Bhutan, district Wangdue Phodrang, Gangchhu, 2883 m alt.; 27°26'N, 90°11'E; Jigme Wangchuk leg. 21.iii.2015.
 Figures 5–7. The Gangzetem brooklet (5), with the watertank at the source (6), and the site where the brooklet crosses the road (7). Photographs by Damber Bdr Chhetri.

Systematics
Superfamilia Rissooidea Gray, 1847
Family Amnicolidae Tryon, 1863

Genus Erhaia Davis & Kuo, 1985

Type species: Erhaia daliensis Davis & Kuo,
in Davis, Kuo, Hoagland, Chen, Yang and Chen, 1985.

Erhaia wangchuki sp. n.

Etymology: wangchuki, after Jigme Wangchuk, who discovered these minute snails.
....


 Edmund Gittenberger, Sherub Sherub and Björn Stelbrink. 2017. Erhaia Davis & Kuo (Gastropoda, Rissooidea, Amnicolidae) also in Bhutan. ZooKeys. 679: 21-28.  DOI:  10.3897/zookeys.679.13326

Friday, June 22, 2018

[Herpetology • 2018] Lygosoma peninsulare & L. kinabatanganensis • On the Taxonomy of Lygosoma bampfyldei Bartlett, 1895 (Squamata: Scincidae) with Descriptions of New Species from Borneo and Peninsular Malaysia and the Resurrection of Lygosoma schneideri Werner, 1900


 Lygosoma peninsulare 
Grismer, Quah, Dzulkefly & Yambun, 2018


Abstract
A reassessment of the taxonomy of Lygosoma bampfyldei based on morphology and color pattern indicates that it is a species complex containing L. bampfyldei Bartlett, 1895 from the Rajang River, Sarawak and Croker Range, Sabah in East Malaysia; Lygosoma peninsulare sp. nov. from Bukit Larut, Perak and 13.5 km east of Jeli, Kelantan, Peninsular Malaysia; Lygosoma kinabatanganensis sp. nov. from the Kinabatangan District, Deramakot camp (=Deramakot Sabah Forestry Department), Sabah, East Malaysia; and L. schneideri Werner, 1900 from Djapura, Indragiri, Sumatra, Indonesia—resurrected herein from the synonymy of L. bampfyldei. The new taxonomy aligns itself well with a growing body of literature demonstrating that semi-fossorial and fossorial Sundaic skinks are more diverse than previously considered.

Keywords: Reptilia, Sundaland, skinks, systematics, new species




L. Lee Grismer, Evan S. H. Quah, Zaharil Dzulkefly and Paul Yambun. 2018. On the Taxonomy of Lygosoma bampfyldei Bartlett, 1895 (Squamata: Scincidae) with Descriptions of New Species from Borneo and Peninsular Malaysia and the Resurrection of Lygosoma schneideri Werner, 1900.   Zootaxa.  4438(3); 528–550. DOI:  10.11646/zootaxa.4438.3.6

[Botany • 2018] Chamaelirium viridiflorum (Melanthiaceae) • A New Species from Jiangxi, China


Chamaelirium viridiflorum L. Wang, Z.C. Liu & W.B. Liao

in Liu, Feng, Wang & Liao, 2018. 

Abstract

Chamaelirium viridiflorum (Melanthiaceae), a new species from southern Jiangxi, China, is described and illustrated. It is similar to C. koidzumiana in their ellipitic or ovate leaf blade and slender petiole, but differs by its zygomorphic flowers and unequal tepals. Besides Chamaelirium viridiflorum is also similar to C. shiwandashanensis in their actinomorphic flowers, but distinguished by its spatulate to obovate leaf blade, distinct petiole and 0.8–1.1 cm long tepals. This new species has an obvious feature that the color of tepals is still greenish at the end of the flowering period.

Keywords: China, Chamaelirium, Melanthiaceae, New species, Taxonomy, Monocots


FIGURE 3. Chamaelirium viridiflorum L. Wang, Z.C. Liu & W.B. Liao.
A & B, Habit; C & D, Blade; E & H, Spike; F, Flower, lateral view; G, Pistil and stamen; I, Capsule.


Chamaelirium viridiflorum L. Wang, Z.C. Liu & W.B. Liao, sp. nov. 

 Chamaelirium viridiflorum is most similar to C. shiwandashanensis, but differs by its distinctly petiolate leaves; greenish inflorescence rachis; and longer tepals (0.8–1.1 cm).

Etymology:— The specific epithet refers to the flowers of this new species that are green throughout the flowering period, differing from those of all other known species.
....



Zhong-Cheng Liu, Lu Feng, Lei Wang and Wen-Bo Liao. 2018. Chamaelirium viridiflorum (Melanthiaceae), A New Species from Jiangxi, China. Phytotaxa. 357(2); 126–132.  DOI:  10.11646/phytotaxa.357.2.5

[PaleoMammalogy • 2018] Junzi imperialis • New Genus of Extinct Holocene Gibbon associated with Humans in Imperial China


 Junzi imperialis
Turvey, Bruun, Ortiz, Hansford, Hu, Ding, Zhang & Chatterjee, 2018


Abstract
Although all extant apes are threatened with extinction, there is no evidence for human-caused extinctions of apes or other primates in postglacial continental ecosystems, despite intensive anthropogenic pressures associated with biodiversity loss for millennia in many regions. Here, we report a new, globally extinct genus and species of gibbon, Junzi imperialis, described from a partial cranium and mandible from a ~2200- to 2300-year-old tomb from Shaanxi, China. Junzi can be differentiated from extant hylobatid genera and the extinct Quaternary gibbon Bunopithecus by using univariate and multivariate analyses of craniodental morphometric data. Primates are poorly represented in the Chinese Quaternary fossil record, but historical accounts suggest that China may have contained an endemic ape radiation that has only recently disappeared.




 


Samuel T. Turvey, Kristoffer Bruun, Alejandra Ortiz, James Hansford, Songmei Hu, Yan Ding, Tianen Zhang and Helen J. Chatterjee. 2018. New Genus of Extinct Holocene Gibbon associated with Humans in Imperial China. Science. 360(6395); 1346-1349. DOI: 10.1126/science.aao4903

The noblewoman's ape
Human activities are causing extinctions across a wide array of taxa. Yet there has been no evidence of humans directly causing extinction among our relatives, the apes. Turvey et al. describe a species of gibbon found in a 2200- to 2300-year-old tomb ascribed to a Chinese noblewoman. This previously unknown species was likely widespread, may have persisted until the 18th century, and may be the first ape species to have perished as a direct result of human activities. This discovery may also indicate the existence of unrecognized primate diversity across Asia.

Vanished ape found in ancient Chinese tomb, giving clues to its disappearance  sciencemag.org/news/2018/06/vanished-ape-found-ancient-chinese-tomb-giving-clues-its-disappearance
Chinese grave reveals vanished gibbon genus  science.sciencemag.org/content/360/6395/1287
Ancient Royal Tomb Yields Strange New Ape Species  on.natgeo.com/2IadhQP via @NatGeo
Ancient Chinese tomb reveals previously unknown extinct species  fw.to/MiyAvFb

[Paleontology • 2018] Cicada Fossils (Cicadoidea: Tettigarctidae and Cicadidae) with A Review of the Named Fossilised Cicadidae


(4) Platypedia primigenia, nearly entire specimen, wings superimposed over ventro-lateral body, in Colorado University Museum of Natural History, USA. (5a) Tibicina gigantea holotype, dorsal, entire specimen, from Boulard & Riou (1989). (5b) Tibicina gigantea close-up of left forewing base, from Boulard & Riou (1989). (6) Tibicina haematodes, forewing, from Wagner (1967). (7) Tibicina sakalai, holotype, including counterpart, female, lateral, from Prokop & Boulard (2000).

(1) Graptopsaltria aff. nigrofuscata forewing; in National Museum of Nature and Science, Japan; NSM-PA12018; image courtesy Yasunari Shigeta. (4) Minyscapheus dominicanus, holotype, whole specimen in amber; in collection George Poinar; image courtesy George Poinar. (5) Miocenoprasia grasseti, holotype, ventral impression; in Riou collection, Musée de Paléontologie, La Voulte-sur-Rhône, France; image courtesy Bernard Riou.  (7) Dominicicada youngi, holotype, hatchling in amber; in collection George Poinar; image courtesy George Poinar.

(2) Tanna? sp. hindwing; in National Museum of Nature and Science, Japan; NSM-PA12017; image courtesy Yasunari Shigeta. (3) Auritibicen bihamatus forewing; in National Museum of Nature and Science, Japan; NSM-PA12045; image courtesy Yasunari Shigeta. (6) Yezoterpnosia nigricosta forewing; in National Museum of Nature and Science, Japan; NSM-PA12019; image courtesy Yasunari Shigeta. (8) Burmacicada protera, holotype, hatchling in amber; in collection George Poinar; image courtesy George Poinar.

in Moulds, 2018. 

Abstract
The Cicadoidea comprise two families, the Cicadidae and the Tettigarctidae. This paper evaluates the status and taxonomy of all named Cicadoidea fossils belonging to the Cicadidae. Shcherbakov (2009) has previously revised the Tettigarctidae. Two new genera are described, Camuracicada gen. n. and Paleopsalta gen. n., for Camuracicada aichhorni (Heer, 1853) comb. n. and Paleopsalta ungeri (Heer, 1853) comb. n. A lectotype is designated for Cicada emathion Heer, 1853.

          Cicada grandiosa Scudder, 1892 is transferred to Hadoa Moulds, 2015 as Hadoa grandiosa comb. n.; Oncotympana lapidescens J. Zhang, 1989 is transferred to Hyalessa China, 1925 as Hyalessa lapidescens comb. n.; Meimuna incasa J. Zhang, Sun & X. Zhang, 1994 and Meimuna miocenica J. Zhang & X. Zhang, 1990 are transferred to Cryptotympana Stål, 1861 as Cryptotympana incasa comb. n. and Cryptotympana miocenica comb. n.; Tibicen sp. aff. japonicus Kato, 1925 is transferred to Auritibicen as Auritibicen sp. aff. japonicus comb. n., and Terpnosia sp. aff. vacua Olivier, 1790 is transferred to Yezoterpnosia Matsumura, 1917 as Yezoterpnosia sp. aff. vacua comb. n. The generic placement of two other fossils is changed to reflect current classification, those species now being Auritibicen bihamatus (Motschulsky, 1861) and Yezoterpnosia nigricosta (Motschulsky, 1866).

         Two species, Davispia bearcreekensis Cooper, 1941 and Lithocicada perita Cockerell, 1906, are transferred from the subfamily Cicadinae to the Tibicininae, tribe Tibicinini. Cicadatra serresi (Meunier, 1915) is also transferred from the Cicadinae to the Cicadettinae because the Cicadatrini have recently been transferred from the Cicadinae to the Cicadettinae (Marshall et al. 2018).

         Miocenoprasia grasseti Boulard and Riou, 1999 is transferred from the tribe Prasiini to the Lamotialnini. Tymocicada gorbunovi Becker-Migdisova, 1954 is transferred from the Dundubiini to the Cryptotympanini; Paracicadetta oligocenica Boulard & Nel, 1990 is transferred from the Cicadettini to the Pagiphorini and Minyscapheus dominicanus Poinar et al., 2011 is assigned to the Taphurini. Names of species once considered to belong in Cicadidae, but now excluded, are listed with explanation.

Keywords: Hemiptera, Eocene, Cretaceous, Jurassic, Miocene, Oligocene, Paleocene, Quaternary, Pleistocene, Pliocene, Tertiary

PLATE 2. (1) Lyristes renei, holotype, from Riou (1995). (2) Auritibicen sp. aff. japonicus comb. n., in Osaka Museum of Natural History, image Shigehiko Shiyake. (3) Paracicadetta oligocenica, holotype, part and counterpart, from Boulard & Nel (1990). (4) Platypedia primigenia, nearly entire specimen, wings superimposed over ventro-lateral body, in Colorado University Museum of Natural History, USA; UCM 29658, not the type; image David Zelagin. (5a) Tibicina gigantea holotype, dorsal, entire specimen, from Boulard & Riou (1989). (5b) Tibicina gigantea close-up of left forewing base, from Boulard & Riou (1989). (6) Tibicina haematodes, forewing, from Wagner (1967). (7) Tibicina sakalai, holotype, including counterpart, female, lateral, from Prokop & Boulard (2000).

PLATE 3. (1) Graptopsaltria aff. nigrofuscata forewing; in National Museum of Nature and Science, Japan; NSM-PA12018; image courtesy Yasunari Shigeta. (2) Tanna? sp. hindwing; in National Museum of Nature and Science, Japan; NSM-PA12017; image courtesy Yasunari Shigeta. (3) Auritibicen bihamatus forewing; in National Museum of Nature and Science, Japan; NSM-PA12045; image courtesy Yasunari Shigeta. (4) Minyscapheus dominicanus, holotype, whole specimen in amber; in collection George Poinar; image courtesy George Poinar. (5) Miocenoprasia grasseti, holotype, ventral impression; in Riou collection, Musée de Paléontologie, La Voulte-sur-Rhône, France; image courtesy Bernard Riou. (6) Yezoterpnosia nigricosta forewing; in National Museum of Nature and Science, Japan; NSM-PA12019; image courtesy Yasunari Shigeta. (7) Dominicicada youngi, holotype, hatchling in amber; in collection George Poinar; image courtesy George Poinar. (8) Burmacicada protera, holotype, hatchling in amber; in collection George Poinar; image courtesy George Poinar.

M. S. Moulds. 2018. Cicada Fossils (Cicadoidea: Tettigarctidae and Cicadidae) with A Review of the Named Fossilised Cicadidae. Zootaxa.  4438(3); 443–470. DOI:  10.11646/zootaxa.4438.3.2



[Botany • 2018] Sindora stipitata (Detarioideae, Leguminosae) • A New Species from Northeastern Thailand


Sindora stipitata Chatan & Promprom

in Promprom, Chatan & Saisaard, 2018
มะค่าแต้นครพนม  ||  DOI:  10.3897/phytokeys.100.25870 

Abstract
Sindora stipitata, a new species in the subfamily Detarioideae (Leguminosae), collected from Nakhon Phanom Province, Thailand, is described and illustrated. The new species is morphologically similar to S. leiocarpa but differs in its smaller stature (3–5 m high), 6-foliolate paripinnate leaves, falcate persistent stipules, presence of a petal auricle, absence of a petal claw, stipitate ovary and capitate stigma. A key to the Thailand and Malesia species of Sindora is provided.

Keywords: Sindora, Fabaceae, Nakhon Phanom Province, plant diversity, Thailand, taxonomy


Figure 1. Sindora stipitata Chatan & Promprom, sp. nov.  A habit and habitat B branches and inflorescences C branch with leaves and stipules D branch with fruits.

 Photographs of the type specimen by W. Chatan. 

Figure 2. Line drawing of Sindora stipitata Chatan & Promprom, sp. nov. A a branch with leaves and inflorescence B floral bud C floret D posterior sepal (abaxial side) E posterior sepal (adaxial side) F one of the remaining narrower sepal (abaxial side) G one of the remaining narrower sepal (adaxial side) H petal (adaxial side) I free staminode J fused stamen K pistil.
Illustration by W. Chatan (based on type specimen).

Taxonomy
Sindora stipitata Chatan & Promprom, sp. nov.

Diagnosis: Sindora stipitata is very similar to S. leiocarpa from Malesia, but it is easily distinguished by the following characters: a smaller stature (3-5 m high), 6-foliolate paripinnate leaves, falcate persistent stipules, presence of a petal auricle, absence of a petal claw, stipitate ovary and capitate stigma.

Distribution: The new species is a Thai endemic and is known from only the type locality in the Phulangka National Park, Ban Pheang District, Nakhon Phanom Province, North-eastern Thailand.

Ecology: This new species grows in open areas of dry deciduous forest at an elevation of 250–350 m.


Etymology: The specific epithet refers to its distinctly long ovary stipe. This character is one of many morphological characters that distinguishes the new species from its closely related species.

Vernacular name: Ma Kha Tae Nakhon Phanom - มะค่าแต้นครพนม, Mak Tae.


Preliminary conservation status: Sindora stipitata is known only from the type locality and its estimated extent of occurrence is less than 100 km2. The number of mature individuals was less than 1,000 and the occupied area is continuing to decline slightly. Therefore, it should be considered as “Critically Endangered” according to the IUCN criteria B1 (IUCN 2017).


 Wilawan Promprom, Wannachai Chatan and Peerapon Saisaard. 2018. Sindora stipitata (Detarioideae, Leguminosae), A New Species from Thailand. PhytoKeys. 100: 149-156.  DOI:  10.3897/phytokeys.100.25870

[Herpetology • 2018] Sphenomorphus yersini • A New Skink of the Genus Sphenomorphus Fitzinger, 1843 (Squamata: Scincidae) from Hon Ba Nature Reserve, southern Vietnam


Sphenomorphus yersini 
Nguyen, Nguyen, Nguyen, Orlov & Murphy, 2018

Yersin’s Forest Skink || DOI:  10.11646/zootaxa.4438.2.6

Abstract
A new forest skink of the genus Sphenomorphus Fitzinger, 1843 is described from Khanh Hoa Province, southern Vietnam based on morphological characters of four specimens and a fragment of 653 nucleotides of the gene COI. Sphenomorphus yersini sp. nov. is characterized by the following morphological characters: medium size in adults (snout-vent length up to 55 mm); tail length/snout-vent length ratio 1.81; toes reach to fingers when limbs adpressed; midbody scale rows 32–34, smooth; paravertebral scales 61–69; ventral scale rows 58–67; subcaudal scales 112; supraoculars four, rarely five; prefrontals in broad contact with one another; loreal scales two; tympanum deeply sunk; smooth lamellae beneath finger and toe IV 10–12 and 18–20 respectively; a pair of enlarged precloacal scales; hemipenis deeply forked and asymmetrical with two differently sized smooth lobes. The new species differs from its most similar congener, Sphenomorphus buenloicus Darevsky & Nguyen, 1983, by 16.4–16.7% uncorrected p-distance in COI sequences.

Keywords: Reptilia, COI gene, forest skink, Sphenomorphus buenloicus, Sphenomorphus yersini, asymmetrical hemipenis



Sphenomorphus yersini sp. nov.

Etymology. We name this new species in honor of the famous physician and bacteriologist, Alexandre Yersin (1863–1943), who discovered the bacterium responsible for bubonic plague. Hon Ba NR associates with the name of Alexandre Yersin who built a research station on the top of the mountain and worked there. Currently, the research station has been reconstructed and opened to visitors. We recommend Yersin’s Forest Skink as the common name of this new species.


Sang Ngoc Nguyen, Luan Thanh Nguyen, Vu Dang Hoang Nguyen, Nikolai L Orlov and Robert W. Murphy. 2018.  A New Skink of the Genus Sphenomorphus Fitzinger, 1843 (Squamata: Scincidae) from Hon Ba Nature Reserve, southern Vietnam. Zootaxa. 4438(2); 313–326. DOI:  10.11646/zootaxa.4438.2.6


Thursday, June 21, 2018

[Herpetology • 2018] Liolaemus audituvelatus • Molecular Evidence for Conspecificity of Two Desert Liolaemus Lizards (Iguania: Liolaemidae)


Individuals from a) near Caspana (MUAP-114), near type locality for Liolaemus audituvelatus;
b) Diego de Almagro, type locality of
 L. manueli;
 c) and d) Altos Quebrada Agua Colorada.


in Gamboa, Correa, Marambio-Alfaro, et al., 2018.

Abstract 
Liolaemus audituvelatus (Núñez & Yáñez 1983) and L. manueli (Núñez, Navarro, Garín, Pincheira-Donoso & Meriggio 2003) are endemic species of the Atacama Desert of northern Chile that belong to the montanus group. Both species are considered cryptic from each other and can only be distinguished by their distribution ranges and karyotypes. Originally, there was a wide separation zone between their known distribution ranges, but later collections reduced the gap from 430 km to only 150 km. In this study, we review the geographic information about both species and report new localities within the distribution gap, where species identification becomes difficult. We performed a molecular phylogenetic analysis and applied several species delimitation methods to reassess the taxonomic status of both nominal species and new intermediate populations. Our analyses support the placement of L. manueli in the synonymy of L. audituvelatus. We discuss the biogeographic and conservation implications of this new synonymy. 

Key words: Atacama Desert, synonymy, species delimitation, Liolaemus audituvelatusLmanueliPhrynosaura Introduction

FIGURE 2. Individuals from a) near Caspana (MUAP-114), near type locality for Liolaemus audituvelatus; b) Diego de Almagro, type locality of L. manueli; c) and d) Altos Quebrada Agua Colorada; e) and f) Barranquilla (near Caseron). f) is a gravid female. Note that b) male of L. audituvelatus from known distribution and d) male of L. manueli from type locality, are identical and were found 300 km away (in straight line); and, a) and e) are also similar and were found 600 km away (in straight line).



 Margarita R. De Gamboa, Claudio Correa, Yery Marambio-Alfaro, Edvin Riveros-Riffo and Juan C. Ortiz. 2018. Molecular Evidence for Conspecificity of Two Desert Liolaemus Lizards (Iguania: Liolaemidae). Zootaxa. 4438(2); 283–298. DOI: 10.11646/zootaxa.4438.2.4

  

[Ichthyology • 2018] Distribution and Recruitment of Young-of-the-Year Giant Sea Bass, Stereolepis gigas, off Southern California


Young-of-the-Year  Giant Sea Bass, Stereolepis gigas Ayres, 1859

in Benseman & Allen. 2018. 

This study identified nursery habitat, recruitment patterns, the planktonic larval duration (PLD), size and age at settlement, and growth rate of the young-of-the-year (YOY) Giant Sea Bass (GSB), Stereolepis gigas, off Southern California. A total of 160 YOY GSB were sighted on 150 transects over a three-year period. Young-of-the-year GSB were relatively rare (maximum density of 40/ha) and recruitment was limited to a few areas. In 2014–2015, densities of YOY GSB were significantly higher at six locations off sandy beaches nearest the heads of submarine canyons off Redondo Beach, Newport Beach, and La Jolla, California. The vast majority of occurrences of YOY (73%) were within 500 m of the heads of submarine canyons. Three color phases of YOY were discovered ranging (smallest to largest individuals) from black to brown to orange. Recruitment occurred from July through February with peak abundances occurring in the late summer months from August through October. YOY occurred at depths from 2 m to nearly 10 m. Overall, size of YOY GSB increased with depth in the shallow sand riffle zone. YOY grew rapidly at 1.23 mm/day (n = 23) with collected individuals ranging from 31 to 84 d old based on daily ring increments in otoliths. The planktonic larval duration was estimated to be about one lunar month (26.8±2.4 d) based on the presence of the first settlement check and size of earliest settlers. Size at settlement was estimated to be 14.4±3.0 mm TL (10.6±2.5 mm standard length [SL]). This information adds substantially to our knowledge of early developmental processes and recruitment patterns of Giant Sea Bass that are crucial to our understanding of their life history and to making informed decisions regarding fisheries management policies and conservation efforts.

Fig. 1. A YOY Giant Sea Bass, Stereolepis gigas, photographed over a typical, nearshore, sandy bottom off the Southern California coast.
Inset top: an adult Giant Sea Bass estimated at 2 m in total length photographed off Catalina Island, California.

 Photo: Mike Couffer.

Stephanie A. Benseman and Larry G. Allen. 2018. Distribution and Recruitment of Young-of-the-Year Giant Sea Bass, Stereolepis gigas, off Southern California. Copeia. 106(2); 312-320. DOI: 10.1643/CE-18-021 


[Herpetology • 2018] Amolops gerutu & A. australis • Elevational Size Variation and Two New Species of Torrent Frogs (Anura: Ranidae: Amolops Cope) from Peninsular Malaysia


[A, C]  Amolops larutensis (Boulenger, 1899)
[B, D] Amolops gerutu 
Chan, Abraham, Grismer & Grismer, 2018

  (A) female Amolops larutensis from Fraser's Hill, Pahang; (B) female A. gerutu from Chemerong, Pahang;
 (C) male A. larutensis from Fraser's Hill; (D) male A. gerutu from Sekayu, Terengganu;


Abstract
Previously, only one species of torrent frog (Amolops larutensis) was thought to occur throughout Peninsular Malaysia. However, genomic work has demonstrated that populations from eastern Peninsular Malaysia form two separate lineages that are genetically distinct from A. larutensis that is now restricted to the western half of Peninsular Malaysia. This study demonstrates that all three lineages can be morphologically distinguished from each other, thereby providing additional support for the recognition of the eastern lineages as two distinct species. These lineages are described herein as Amolops gerutu sp. nov. from the eastern states of Kelantan, Terengganu, and Pahang, and A. australis sp. nov. from the southern-most state of Johor. In general, these two new species form a clade that is sister to A. larutensis and can be readily distinguished from it by having: (1) considerably denser and more pronounced dorsal tubercles, and (2) the posterodorsal surface of thighs having dense, dark stippling as opposed to broad vermiculations. Although differences in other morphometric characters were detected, their utility as diagnostic characters should be applied with caution due to the large intraspecific variation that overlaps among different species in many of the characters we measured. As such, we advocate for the use of tuberculation and pattern of the posterodorsal portion of the thighs as primary diagnostic characters. These characters can readily distinguish A. larutensis from the two new species. To differentiate A. australis sp. nov. from A. gerutu sp. nov. and A. larutensis, body size can be a good diagnostic character as A. australis sp. nov. is significantly smaller in both males (mean = 31.04 ± 1.59 mm) and females (mean = 46.48 ± 3.2 mm). Additionally, we show a strong positive correlation between body size and elevation, with populations from montane forests (>900 m asl) being considerably larger than populations at lower elevations.
  
Keywords: Amphibia, Taxonomy, systematics, morphology, amphibian, cryptic species, body size


Amolops gerutu sp. nov.
Tuberculated Torrent Frog

Amolops larutensis Sumarli, Grismer, Anuar, Muin & Quah, 2015, pp 4,9,12.

Distribution. Besides the type locality, Amolops gerutu sp. nov. has been documented from a number of other localities east of the Titiwangsa mountain range including Gunung Stong Forest Reserve, in the state of Kelantan; Lata Tembakah, Lata Belatan, and Sekayu Recreational Forest in the state of Terengganu (Dring 1979; Sumarli et al. 2015); and Sungai Lembing, Sungai Pandan Waterfall, and Chemerong Amenity Forest in the state of Pahang. At Gunung Stong, A. gerutu sp. nov. occurs in syntopy with A. larutensis (Fig. 1).

Natural history. Like most congeners, Amolops gerutu sp. nov. is a strict torrent specialist that only occurs within or along torrential zones of rocky streams from lowland to montane forests. During the day, frogs dwell in rock cracks and sheltered areas among boulder stacks along streams and are rarely seen out in the open. They can be seen in abundance at night, most frequently on boulders by splash zones and occasionally on adjacent low vegetation. When disturbed, frogs dive into the rapids and float downstream. Like other congeners, tadpoles of this species are gastromyzophorous (Pham et al. 2015) and can be seen clinging onto boulders in the splash zone. On such boulders, tadpoles are usually observed above or just below the water line.

Etymology. The specific epithet “gerutu” (English pronunciation “gir-roo-too”) refers to the Malay word of the same construct, meaning “tubercle”, in reference to the pronounced dorsal tubercles that are diagnostic of this species.


Amolops australis sp. nov.
Southern Torrent Frog

Amolops larutensis, Ahmad, Senawi & Lim 2004, p 26; Belabut & Hashim, 2005, p 200; Wood, Grismer, Youmans, Nasir, Ahmad & Senawi, 2008, p 118; Grismer & Pan, 2008, p. 277 (in part); Shahriza, Ibrahim, Anuar & Muin, 2012, p 558, 561.
Staurois larutensis, Belabut & Hashim, 2004, pp. 67, 69.

Distribution. Amolops australis sp. nov. is only known from the southern state of Johor where it has been confirmed to occur in Endau-Rompin National Park and Bantang River Amenity Forest. It is presumed to occur more widely in suitable habitats in the surrounding southern region of Peninsular Malaysia.

Natural history. The natural history of this species is similar to that of Amolops gerutu sp. nov. and A. larutensis. No information is available for tadpoles.

Etymology. The specific epithet is derived from the Latin word “ australis ”, meaning “southern” in English, and is applied in reference to the distribution of this species in southern Peninsular Malaysia that also represents the southern-most distributional limit of the entire genus.


Chan Kin Onn, Robin Kurian Abraham, Jesse L. Grismer and L. Lee Grismer. 2018. Elevational Size Variation and Two New Species of Torrent Frogs from Peninsular Malaysia (Anura: Ranidae: Amolops Cope). Zootaxa. 4434(2); 250–264. DOI:  10.11646/zootaxa.4434.2.2

Kin Onn Chan, Alana M. Alexander, Lee L. Grismer, et al. 2017. Species Delimitation with Gene Flow: A Methodological Comparison and Population Genomics Approach to Elucidate Cryptic Species Boundaries in Malaysian Torrent Frogs.  Molecular Ecology. DOI: 10.1111/mec.14296