Thursday, October 25, 2018

[Ornithology • 2018] Phylloscopus rotiensis • A Striking New Species of Leaf Warbler from the Lesser Sundas as Uncovered Through Morphology and Genomics


Phylloscopus rotiensis  
Ng, Prawiradilaga, Ng, Suparno, Ashari, Trainor, Verbelen & Rheindt, 2018

photo: Philippe Verbelen

Abstract 
Leaf warblers (Aves; Phylloscopidae) are a diverse clade of insectivorous, canopy-dwelling songbirds widespread across the Old World. The taxonomy of Australasian leaf warblers is particularly complex, with multiple species-level divergences between island taxa in the region requiring further scrutiny. We use a combination of morphology, bioacoustics, and analysis of thousands of genome-wide markers to investigate and describe a new species of Phylloscopus leaf warbler from the island of Rote in the Lesser Sundas, Indonesia. We show that this new Rote Leaf Warbler is morphologically and genomically highly distinct from its congenerics, but do not find vocal differentiation between different island taxa. We discuss the behaviour and ecology of this highly distinctive new species, and make recommendations about its conservation status. We believe this constitutes the first description of a novel bird species that is partly based on insights from massive amounts of genome-wide DNA markers.



 facebook.com/JournalofIndonesianOrnithologyKUKILA





Phylloscopus rotiensis, species nova

English name: Rote Leaf Warbler

Etymology: We name this species after Rote Island, the only locality at which this leaf warbler can be found.


Diagnosis: The new taxon is distinguished from all other Phylloscopus leaf warblers by a proportionately much longer bill.

The Rote Leaf Warbler specimen had a bill length of 16.3 mm, as compared to 13.4 ± 0.1 mm in the Timor Leaf Warbler (n = 2). A comparison of bill length as a proportion of wing length between the Rote and Timor Leaf Warblers indicates that the Rote Leaf Warbler shows a bill to wing length ratio of 0.286, whereas the Timor Leaf Warbler has a bill to wing length ratio of merely 0.248 ± 0.01. The bill of the Rote Leaf Warbler is thus proportionately 15% longer than that of the Timor Leaf Warbler (Fig. 3).
....


  

Nathaniel. S. R. Ng, Dewi. M. Prawiradilaga, Elize. Y. X. Ng, Suparno, Hidayat Ashari, Colin Trainor, Philippe Verbelen and Frank. E. Rheindt. 2018. A Striking New Species of Leaf Warbler from the Lesser Sundas as Uncovered Through Morphology and Genomics. Scientific Reports. 8 (1). DOI:  10.1038/s41598-018-34101-7

     

Rote Island, Indonesia sees new songbird  news.nus.edu.sg/highlights/rote-island-indonesia-sees-new-songbird

[Ichthyology • 2018] Rhinogobius maculagenys • A New Species of Freshwater Goby (Teleostei: Gobiidae) from Hunan, China


Rhinogobius maculagenys  
Wu, Deng, Wang & Liu, 2018

DOI: 10.11646/zootaxa.4476.1.11

Abstract 
A new freshwater gobyRhinogobius maculagenys sp. nov., was collected from Hunan Province in Southern China. This species can be distinguished from all congeners by a combination of the following features: first dorsal fin with 6 spines; second dorsal fin with a single spine and 7–9 segmented rays; anal fin with a single spine and 6–8 segmented rays; pectoral fin with 16 segmented rays; 32–34 longitudinal scales; 9–13 transverse scales; 11+16=27 vertebrae; pore ω1 missing; head and body yellowish brown; cheek and opercle yellowish brown with over 30 small orange spots, branchiostegal membrane yellow with over 10 small orange spots in males and white and spotless in females; first dorsal fin trapezoidal in males and nearly semicircular in females, with large bright blue blotch in front of second spine; spines 4 and 5 longest, rear tip extending to base of second branched ray of second dorsal fin in males when adpressed, but just reaching or not reaching anterior margin of second dorsal fin in females; caudal fin with 5–6 vertical rows of brown spots; flank with several longitudinal rows of blackish-brown spots; and belly pale white.

Key words: Xiangjiang, fish taxonomy, valid species, color pattern


FIGURE 4 Rhinogobius maculagenys sp. nov. 
Lateral (a) and ventral (c) views of paratype, male, HUNNULS2017-12-0613, 39.85 mm SL;
lateral (b) and ventral (d) views of paratype, female, HUNNULS2017-12-0612, 44.50 mm SL.

Rhinogobius maculagenys sp. nov. 

Diagnosis. Rhinogobius maculagenys is distinguished from all congeners by a combination of the following features: second dorsal-fin rays I/7–9; anal-fin rays I/6–8; pectoral-fin rays 16; longitudinal scale series 32–34; transverse scale series 9–13; predorsal scale series 0; vertebral count 11+16=27; pore ω1 missing; head and body yellowish brown; cheek and opercle yellowish brown with over 30 small orange spots, branchiostegal membrane yellow with over 10 small orange spots in males and white and spotless in females; first dorsal fin trapezoidal in males and nearly semicircular in females, with large bright blue blotch in front of second spine; spines 4 and 5 longest, rear tip extending to base of second branched ray of second dorsal fin in males when adpressed, but just reaching or not reaching anterior margin of second dorsal fin in females; caudal fin with 5–6 vertical rows of brown spots; flank with several longitudinal rows of blackish-brown spots; belly pale white.
....

Distribution and habitat. The species is only known from Zhong Water, in the upper reaches of the Xiangjiang River on Lanshan County, Hunan Province. This species may be endemic within this basin.

Etymology. The specific name, maculagenys, from the Latin macula meaning spot and genys meaning cheek, in reference to the diagnostic feature of round orange spots on cheek. To be treated as a noun in apposition.


Qianqian Wu, Xuejian Deng, Yanjie Wang and Yong Liu. 2018. Rhinogobius maculagenys, A New Species of Freshwater Goby (Teleostei: Gobiidae) from Hunan, China. Zootaxa. 4476(1); 118–129. DOI: 10.11646/zootaxa.4476.1.11

[Crustacea • 2018] Alvinocaris costaricensis • A New Species of Alvinocaris (Decapoda: Caridea: Alvinocarididae) from Costa Rican Methane Seeps


 Alvinocaris costaricensis
Martin, Shank, Cha, Seid, Rouse & Wall, 2018


Abstract
A new caridean shrimp, Alvinocaris costaricensis, is described from methane seeps in the eastern Pacific off Costa Rica. The new species is the 16th described species of the genus, and by molecular analysis appears closest to Alvinocaris komaii from the Lau Basin, southwestern Pacific, but shares certain morphological characters with A. lusca from the Galapagos Rift and A. muricola from the West Florida Escarpment, as well as with A. kexueae from the Manus Basin in the Southwest Pacific.

Keywords: Crustacea, Caridea, Alvinocaris, methane seeps, Costa Rica


 Alvinocaris costaricensis new species, holotype female, SIO-BIC C12202, Eastern Pacific Ocean, Costa Rica, live color photograph.  

Alvinocaris costaricensis, new species

Etymology. The specific epithet reflects the location of the methane seeps off the Pacific coast of Costa Rica


 Joel W. Martin, T. M. Shank, H. Cha, Charlotte Seid, Greg W. Rouse and Adam Wall. 2018. A New Species of Alvinocaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from Costa Rican Methane Seeps. Zootaxa. 4504(3); 418–430. DOI: 10.11646/zootaxa.4504.3.7

[Entomology • 2018] New Species of Dolichopoda Bolívar, 1880 (Orthoptera, Rhaphidophoridae) from the Aegean Islands of Andros, Paros and Kinaros (Greece); Dolichopoda kikladica, D. margiolis & D. christos-nifoni


Dolichopoda kikladica Di Russo & Rampini

in Di Russo, Rampini, Chimenti & Alexiou, 2018.

In this paper two new species of Dolichopoda Bolívar, 1880 from the Cyclades islands of Andros and Paros and one from the Dodecanissos island of Kinaros, are described, increasing the total number of Greek species to 32. The new species from Paros (Dolichopoda kikladica Di Russo & Rampini, n. sp.) and Kinaros (Dolichopoda margiolis Di Russo & Rampini, n. sp.) show strong similarities with D. naxia Boudou-Saltet, 1972 from Naxos forming an homogenous group limited to the central Aegean islands. On the other hand the species D. christos-nifoni Di Russo & Rampini, n. sp. from Andros shows a combination of morphological characters that partly resemble characters found in Evvian Dolichopoda, and partly in species from the Cyclades. Relationships among these three new taxa and the other adjacent Dolichopoda species are discussed on the basis of the paleogeological and paleoclimatic events that shaped the present geography of the Aegean area.

KEYWORDS: Cyclades, Dodecanese, Aegean Sea, biogeography, new species


Habitus female Dolichopoda kikladica Di Russo & Rampini, n. sp. 


 Claudio Di Russo, Mauro Rampini, Claudio Chimenti and Sotiris Alexiou. 2018. New Species of Dolichopoda Bolívar, 1880 (Orthoptera, Rhaphidophoridae) from the Aegean Islands of Andros, Paros and Kinaros (Greece). ZOOSYSTEMA40(20); 469-479.  DOI: 10.5252/zoosystema2018v40a20 


RÉSUMÉ: Nouvelles espèces de Dolichopoda Bolívar, 1880 (Orthoptera, Rhaphidophoridae) des îles égéennes d'Andros, de Paros et de Kinaros (Grèce).  Dans cet article, deux nouvelles espèces de Dolichopoda Bolívar, 1880 sont décrites des îles Cyclades, Andros et Paros, et une autre des îles Dodecanissos, Kinaros, portant à 32 le nombre total d'espèces grecques. Deux de ces espèces, D. kikladica Di Russo & Rampini, n. sp. de Paros et D. margiolis Di Russo & Rampini, n. sp. de Kinaros, présentent de fortes similitudes avec D. naxia Boudou-Saltet, 1972 endémique de Naxos, formant un groupe homogène limité aux îles égéennes centrales. D'autre part, l'espèce D. christos-nifoni Di Russo & Rampini, n. sp. d'Andros présente une combinaison de caractères morphologiques, qui ressemblent en partie à des caractères trouvés dans les Dolichopoda d'Eubée, et, en partie, à des caractères des espèces des Cyclades. Les relations entre ces trois nouveaux taxons et les autres espèces de Dolichopoda proches géographiquement sont discutées sur la base des événements paléogéologiques et paléoclimatiques qui ont façonné la géographie actuelle de la région égéenne.
 Mot clés: Cyclades, Dodecanese, mer Égée, biogeographie, espèces nouvelles

[Cnidaria • 2018] Hana hanagasa & H. hanataba • Stolonifera from Shallow Waters in the north-western Pacific: A Description of A New Genus and Two New Species within the Arulidae (Anthozoa, Octocorallia)


[a - b] Hana hanagasa [c - f] H. hanataba
Lau, Stokvis, van Ofwegen & Reimer, 2018


Abstract
A new genus and two new species of stoloniferous octocorals (Alcyonacea) within the family Arulidae are described based on specimens collected from Okinawa (Japan), Palau and Dongsha Atoll (Taiwan). Hana gen. n. is erected within Arulidae. Hana hanagasa sp. n. is characterised by large spindle-like table-radiates and Hana hanataba sp. n. is characterised by having ornamented rods. The distinction of these new taxa is also supported by molecular phylogenetic analyses. The support values resulting from maximum likelihood and Bayesian inference analyses for the genus Hana and new species H. hanagasa and H. hanataba are 82/1.0, 97/1.0 and 61/0.98, respectively. Hana hanagasa sp. n. and Hana hanataba sp. n. are the first arulid records for Okinawa, Palau, and Dongsha Atoll, and represent species of the second genus within the family Arulidae.

Keywords: Arulidae, COI, molecular phylogeny, mtMutS, north-western Pacific, octocoral, 28S rDNA, Stolonifera, taxonomy


Figure 2. In situ photographs of examined Hana specimens from
 Okinawa,  a  Hana hanagasa, holotype, OKA170711-15 and b Hana hanagasa, paratype, OKA170711-06;
Palau c Hana hanataba holotype, ROR171225-01 and d Hana hanataba, paratype, ROR171226-03;
Dongsha e Hana hanataba, paratype, DSX180320-1-01 and f Hana hanataba, paratype, DSX180324-3-15
g specimen BKI180320-2-10, an arulid photographed in Tunku Abdul Rahman Park, Sabah, Malaysia
h Hana hanagasa, holotype, OKA170711-15, colony preserved in ethanol. Scale bar: 1 mm.

Class Anthozoa Ehrenberg, 1831
Subclass Octocorallia Haeckel, 1866
Order Alcyonacea Lamouroux, 1812

Family Arulidae McFadden & Ofwegen, 2012

Type genus: Arula McFadden & Ofwegen, 2012

Diagnosis: (after McFadden and Ofwegen 2012). Alcyonacea with polyps that have tentacles that are fused proximally into a broad, circular oral membrane. Sclerites in the form of table-radiates.

Genus Hana gen. n. 

Type species: Hana hanagasa, sp. n., by original designation.

Diagnosis: Colony with polyps connected through flat and thin ribbon-like stolons. Anthocodiae (retractile portion of polyp) retract into cylindrical to clavate calyces. Tentacles are fused proximally, forming a broad, circular oral membrane. The oral membrane has eight deep furrows, which run from the intertentacular margin to the mouth of the polyp, giving it a plump appearance. Sclerites of anthocodia are rods. Sclerites of calyx are 6-radiates and table-radiates. The main difference between Hana and Arula is in sclerites found in the type species Hana hanagasa sp. n. and Arula petunia in the stolon. Sclerites of the stolon are fused sheets that form a flattened network of table-radiates in H. hanagasa, while in A. petunia they are similar to the separate table-radiates found in the calyx. Additionally, there is a difference in sizes of the table-radiates, being longer in H. hanagasa than in A. petunia. Sclerites colourless. Zooxanthellate.

Etymology: From the Japanese language ‘hana’ (), meaning flower; denoting the shape of the polyps, which resemble flowers. Gender: feminine.



Figure 1. Map of sampling sites at three locations in the north western Pacific;
 a Okinawa Island (Japan) b Dongsha Atoll (Taiwan); and c Palau.

Hana hanagasa sp. n.
....

Distribution: Northwest coast of Okinawa Island and southeast coast of Iheya Island in the East China Sea.

Remarks: Arula and Hana are the only two genera within the family Arulidae. Arula petunia and H. hanagasa have very similar polyp morphologies with only a clear difference in polyp colour. Oral disk and tentacles of A. petunia are blue in life and white and brown in H. hanagasa, respectively. This would suggest assignment to the same genus, however, the combination of differences in genetic data and sclerite morphology indicate that they should be separate from each other at the generic level. The possibility that there are similar species or previous descriptions and reports on arulid species has previously been discussed (McFadden and Ofwegen 2012) and so far, no reports have been made on possible congeners.

Etymology: From the Japanese language ‘hanagasa’ (花笠), the traditional Okinawan ceremonial dance headpiece worn by female performers; denoting the shape of the polyps, which resembles the flower headpiece.


Hana hanataba sp. n.
....

Distribution: The south-east of Palau in the Philippine Sea and the north to north-east reef of Dongsha Atoll, Taiwan in the South China Sea.

Remarks: Hana hanagasa and Hana hanataba have very similar polyp morphology, with minor colour differences, which could be due to differing abundances of zooxanthellae. Genetic data and sclerite morphology indicate that H. hanagasa and H. hanataba should be separated from each other at the species level. Sclerites found in H. hanataba are different from those in H. hanagasa in the presence of ornamented rods, which are lacking in H. hanagasa. It is noteworthy that both H. hanagasa and H. hanataba were found in environments with the presence of a comparatively strong current.

Etymology: From the Japanese language ‘hanataba’ (花束), meaning bouquet; denoting the multitude of polyps resembling arranged flowers.


 Yee Wah Lau, Frank Robert Stokvis, Leendert Pieter van Ofwegen and James Davis Reimer. 2018. Stolonifera from Shallow Waters in the north-western Pacific: A Description of A New Genus and Two New Species within the Arulidae (Anthozoa, Octocorallia). ZooKeys. 790: 1-19.  DOI: 10.3897/zookeys.786.28875

Wednesday, October 24, 2018

[Herpetology • 2018] Systematic Revision of the Living African Slender-snouted Crocodiles Mecistops Gray, 1844; M. cataphractus & M. leptorhynchus


Mecistops leptorhynchus (Bennett, 1835) 

in Shirley, Carr, Nestler, Vliet & Brochu, 2018.

Abstract
Molecular and morphological evidence has shown that the African slender-snouted, or sharp-nosed, crocodile Mecistops cataphractus (Cuvier, 1824) is comprised of two superficially cryptic species: one endemic to West Africa and the other endemic to Central Africa. Our ability to characterize the two species is compromised by the complicated taxonomic history of the lineage and overlapping ranges of variation in distinguishing morphological features. The name M. cataphractus was evidently originally based on West African material, but the holotype is now lost. Although types exist for other names based on the West African form, the name M. cataphractus is sufficiently entrenched in the literature, and other names sufficiently obscure, to justify retypification. Here, we designate a neotype for M. cataphractus and restrict it to West Africa. We resurrect M. leptorhynchus as a valid species from Central Africa and identify exemplary referred specimens that, collectively, overcome the obscurity and diagnostic limits of the extant holotype. We additionally indicate suitable neotype material in the event the holotype is lost, destroyed, or otherwise needing replacement, and we rectify the previously erroneous type locality designation. We provide a revised diagnosis for crown Mecistops, and revise and update previous descriptions of the two living species, including providing both more complete descriptions and discussion of diagnostic characters. Finally, we provide considerable discussion of the current state of knowledge of these species’ ecology, natural history, and distribution.
  
Keywords: Reptilia, Mecistops, Crocodylia, Crocodylidae, leptorhynchusbennettiicataphractuscongicus, cryptic species

SYSTEMATICS 
Crocodylia Gmelin, 1789 
Crocodylidae Cuvier, 1807 
Mecistops Gray, 1844

Etymology. Gray (1844) did not offer an etymology for Mecistops. However, ‘Mecist’ is most likely derived from the Greek mekist, meaning longest, and ‘ops’ is a derivative of the Greek opsis meaning appearance or aspect. Thus, the name Mecistops most likely refers to the elongated appearance of the skull/snout in slender-snouted crocodiles relative to species of the genus Crocodylus.

Content. Mecistops cataphractus (Cuvier, 1824) and M. leptorhynchus (Bennett, 1835). 

Distribution. Mecistops is endemic to western Africa ranging from Lake Tanganyika and Lake Mweru in the east to the Gambia River in the west and, at least historically, occupying all major river drainages, lakes, and wetlands with appropriate habitat north to the 13th parallel in far western Africa (i.e., Senegambia region), the 10th parallel in West Africa (i.e., Upper Guinea block), and the 6th parallel in Central Africa (Fig. 1).


Map showing the distribution of Mecistops and its two content species: M. cataphractus and M. leptorhynchus.

Mecistops cataphractus (Cuvier, 1824)
typically colored and patterned animals from the Senegambia area illustrating the dark gold background color and heavy black blotching, jaw spots, and overall dark patterning from the Gambia River, River Gambia National Park, The Gambia.


Mecistops cataphractus (Cuvier, 1824) 
Crocodilus cataphractus Cuvier, 1824: 58. 
Type RCSM 710 (lost), juvenile. Unknown origin, terra typica designated Senegal River (Fuchs et al. 1974a). Gray 1831: 59. Duméril & Bibron 1836: 126. Falconer 1846: 362. Duméril & Duméril 1851: 29, 1852: 252. Owen 1853: 155. Huxley 1859: 16. Duméril 1861: 171. Strauch 1866: 60 & 106, 1868: 58. Giebel 1877: 105. Boulenger 1889: 279. Mook 1921b: 159. 

Mecistops bennettii Gray, 1844: 57 (nomen novum for Crocodilus leptorhynchus Bennett 1835; Type NHMUK 1977.444). 
Mecistops cataphractus Gray, 1844: 57. Baikie 1857: 57. Tornier 1901: 66; 1902: 663. Nieden 1913: 53. McAliley et al. 2006: 17. Hekkala et al. 2011: 4201. Shirley et al. 2014: 2. 
Crocodylus cataphractus Schmidt 1919: 417. Wermuth & Mertens 1961: 359. King & Burke 1989: 9. 

Etymology. Cuvier (1824) did not provide an etymology for cataphractus. However, we assume it came from the Greek kataphraktos (κατάφρακτος) meaning armored, shielded or completely enclosed. Cuvier (1824) gave this species the French common name “crocodile à nuque cuirassée” (“armor-necked crocodile”). Both the Latin and French are presumably in reference to the extra rows of dorsal scutes joining the nuchal cluster compared to other crocodiles of the genus Crocodylus.



Mecistops leptorhynchus, high orange and black individual from the N’gowe River, Gabon.
(photo: J. Thorbjarnarson)

Mecistops leptorhynchus (Bennett, 1835) 
Crocodilus leptorhynchus Bennett, 1835: 128 (apud. Fernando Po; Type NHMUK 1947.3.6.35, juvenile, Cuvier 1836: 116). Murray 1862: 222. 

Etymology. Bennett (1835) did not provide an etymology for leptorhynchus. However, ‘lepto’ is derived from the Greek leptós meaning thin, fine, or slender and rhynchos meaning beak or snout. Thus, Mecistops leptorhynchus is a slender snouted crocodylian of the genus Mecistops, which Bennett may have found appropriate given his finding of a longer head length to head width ratio (3:1) than he found in M. cataphractus (2.5:1).

Conclusions 
As for other recently proposed taxonomic revisions within Crocodylia (i.e., the dwarf and Nile crocodile cryptic species complexes), at first glance slender-snouted crocodiles from Lake Tanganyika to the Gambia River appear quite similar. However, we here provide significant cranial shape, external phenotypic, and ecological data that, in addition to previously published molecular and discrete morphological evidence (Shirley et al. 2014), strongly support the recognition of two species in the genus Mecistops. That all morphological, molecular, and ecologically segregating characters are isolated in two different biogeographic zones makes identification of M. cataphractus and M. leptorhynchus, at least in the wild, a non-contentious issue. Further, for legislation enforcement (e.g., CITES), as well as management of captive populations, we identified sufficient molecular and morphological characters for unambiguous species identification. However, this may not be so critical for the former as Mecistops species are integrally protected and listed in CITES Appendix I in all range states and are generally not considered of value in the international trade of crocodylian products (e.g., skins). 




Matthew H. Shirley, Amanda N. Carr, Jennifer H. Nestler, Kent A. Vliet and Christopher A. Brochu. 2018.  Systematic Revision of the Living African Slender-snouted Crocodiles (Mecistops Gray, 1844). Zootaxa. 4504(2); 151–193. DOI:  10.11646/zootaxa.4504.2.1

New crocodile species found hiding in plain sight  on.natgeo.com/2AoI9we via @NatGeo
New African crocodile species discovered! - via @africageo | https://shar.es/a19N6n  
New study sheds light for those working to save world's endangered crocodiles phys.org/news/2013-12-world-endangered-crocodiles.html via @physorg_com

Saturday, October 20, 2018

[Entomology • 2018] Reinstatement of the New Zealand Cave Wētā Genus Miotopus Hutton (Orthoptera: Rhaphidophoridae) and Description of A New Species, Miotopus richardsi


Miotopus richardsi 
 Fitness, Morgan-Richards, Hegg & Trewick, 2018


Abstract
Comparison of morphological and genetic data from New Zealand forest cave wētā suggests we should recognise the genus Miotopus proposed by Hutton (1898). A new species within this genus is described (Miotopus richardsi sp. nov.). Both Miotopus diversus (Hutton, 1898) and Miotopus richardsi sp. nov. are common in native forests and widespread in New Zealand. Here we provide their known distributions and key traits

Keywords: cave wētā; cave cricket; Miotopus; Pleioplectron; Rhaphidophoridae


Fig. 10. Living Miotopus Hutton, 1898 in their natural environment.
 A–B. Miotopus diversus (Hutton, 1896), adult ♂. A. Resolution Bay, Queen Charlotte Sound. B. Turitea Reserve, Palmerston North.
 C–F. Miotopus richardsi sp. nov. C. Adult ♀, Brewster Hut Track, Haast Pass. D. Female nymph, Gouland Downs Caves, Kahurangi NP. E. ♀, laying eggs in rotting wood, Brewster Hut Track, Haast Pass. F. ♀, ‘licking’ the slime off a native leaf-veined slug (Pseudaneitea spp.), Raspberry Flat, Matukituki River West Branch.

Order Orthoptera Latreille, 1793

Superfamily Rhaphidophordoidea Walker, 1869
Family Rhaphidophoridae Walker, 1869
Subfamily Macropathinae Karny, 1930

Tribe Macropathini Karny, 1930
Genus Miotopus Hutton, 1898

Medium size cave wētā (body length 11–17 mm) found in forests and caves, on three main islands of New Zealand. The genus consists of two species that are structurally quite distinct from one another, and share some morphological characteristics with Pleioplectron.
....


 A–B. Miotopus diversus (Hutton, 1896), adult ♂. A. Resolution Bay, Queen Charlotte Sound. B. Turitea Reserve, Palmerston North.  C–D. Miotopus richardsi sp. nov. C. Adult ♀, Brewster Hut Track, Haast Pass. D. Female nymph, Gouland Downs Caves, Kahurangi NP. 

Miotopus diversus Hutton, 1898
Diagnosis A medium sized cave wētā found in forested areas around the North Island, New Zealand, mainly in leaf litter on the forest floor, or in the roots of trees. Dark brown with visible dark and pale bands on the fore and mid legs, it could be most easily confused with the sympatric Pleioplectron hudsoni. However, adult Miotopus diversus are larger (see Table 1), usually appear darker in life, and have small spines on the dorsal surface of the mid tibiae, and are further distinguished from Pleioplectron by spine count and male terminalia.


Miotopus richardsi
 C. Adult ♀, Brewster Hut Track, Haast Pass. E. ♀, laying eggs in rotting wood, Brewster Hut Track, Haast Pass. F. ♀, ‘licking’ the slime off a native leaf-veined slug (Pseudaneitea spp.), Raspberry Flat, Matukituki River West Branch. 

Miotopus richardsi sp. nov.

Diagnosis: A medium sized cave wētā found in forested areas of the South Island, New Zealand with a variegated colour pattern. Similar to Miotopus diversus based on apical spines with the exception of the presence on hind femora of both prolateral and retrolateral apical spines (n.b. this trait was formerly considered diagnostic of Pachyrhamma, see Cook et al. 2010). It is easily identified by the very long legs and the presence of three pairs of prominent, socketed superior spines on the hind tibiae. Female with subgenital plate similar to M. diversus, but differs in male genital terminalia. Notably long ovipositor, as long as or longer than body length.

 Etymology: Named for Aola Richards who studied New Zealand cave wētā and published many important systematic papers from 1954 until 1972.


Josephine L. Fitness, Mary Morgan-Richards, Danilo Hegg and Steven A. Trewick. 2018. Reinstatement of the New Zealand Cave Wētā Genus Miotopus Hutton (Orthoptera: Rhaphidophoridae) and Description of A New Species. European Journal of Taxonomy. 468;  1–24.  DOI:  10.5852/ejt.2018.468

[Ornithology • 2019] Atlantisia rogersi • The Origin of the World’s Smallest Flightless Bird, the Inaccessible Island Rail (Aves: Rallidae)


Atlantisia rogersi Lowe, 1923

in Stervander, Ryan, Melo & Hansson, 2018. 

Highlights
Atlantisia rogersi colonized Inaccessible Island from S. America 1.5 million years ago.
• Its closest relative is the Dot-winged Rail Porzana spiloptera.
 • The well-supported clade also contains Black Rail Laterallus jamaicensis.
• We advise conservative taxonomic changes: Laterallus rogersi, L. spilopterus.
• Further sampling of the ‘Laterallus clade’ required for a fully resolved phylogeny.

Abstract
Rails (Aves: Rallidae) are renowned for their extreme dispersal capability, which has given rise to numerous island lineages. Many insular species lost the ability to fly as a response to release from predator pressure—a feature causing rapid extinction when humans subsequently introduced mammals. The world’s smallest extant flightless bird, the Inaccessible Island Rail Atlantisia rogersi, is endemic to Inaccessible Island, Tristan da Cunha archipelago, in the central South Atlantic Ocean. It is placed in a monotypic genus, but its taxonomic affinity, as well as geographic origin, are disputed. Contrary to its suggested Old World origin, we demonstrate that the Inaccessible Island Rail is nested within the mainly South American ‘Laterallus clade’ and that it colonized ≥3 million-year-old Inaccessible Island from South America c. 1.5 million years ago. The taxonomy of rails has traditionally been based on morphology, and convergent evolution has caused many cases of misclassification. We suggest a re-classification within the ‘Laterallus clade’ and call for extended coverage of taxon sampling for DNA sequencing.

Keywords: Colonization, Oceanic islands, Phylogeny, Phylogeography, Taxonomy



Fig. 1. (A) Map showing the location of Inaccessible Island of the Tristan da Cunha archipelago, and distances to continents and islands (the latter not drawn to scale). The approximate range of Dot-winged Crake Porzana spiloptera, sister species of the Inaccessible Island Rail Atlantisia rogersi, is shown with grey shading.

Fig. 1.  (B) Inaccessible Island Rail Atlantisia rogersi (photo: P.G.R.). (C) Dot-winged Crake Porzana spiloptera (photo: Alec Earnshaw). (D) Black Rail Laterallus jamaicensis, which is sister to B and C (photo: Chuck Streker). (E) Galápagos Crake Laterallus spilonota (photo: Jaime Chaves), which is presumed to belong to the same clade as B–D.






 Martin Stervander, Peter G. Ryan, Martim Melo and Bengt Hansson. 2018. The Origin of the World’s Smallest Flightless Bird, the Inaccessible Island Rail Atlantisia rogersi (Aves: Rallidae). Molecular Phylogenetics and Evolution. 130; 92-98.  DOI: 10.1016/j.ympev.2018.10.007 

[Crustacea • 2018] Allorchestoides rosea • A New Genus and Species of Dogielinotid Amphipod (Amphipoda: Dogielinotidae) from the Nipa Palm in Thailand, with An Updated Key to the Genera


Allorchestoides rosea 

Wongkamhaeng, Dumrongrojwattana & Shin, 2018

 Abstract
During a scientific survey, a new genus of the dogielinotid amphipoda was found in the Nipa palm (Nypa fruticans) in Bang Krachao Urban Oasis, Samut Prakan Province, Thailand. We placed this new genus, Allorchestoides gen. nov., within the family Dogielinotidae. The new taxa can be easily distinguished from the remaining genera by differences in the incisor of the left and right mandibles, apical robust setae of the maxilla 1, and the large coxa and strong obtuse palm in the female gnathopod 1. The type species of Allorchestoides gen. nov., Allorchestoides rosea n. sp., is described here in, with an updated key to the genera of the family Dogielinotidae.


Order Amphipoda Latreille, 1816

Suborder Senticaudata Lowry & Myers, 2013

Family Dogielinotidae Gurjanova, 1953



Fig 2. Allorchestoides rosea sp. n., holotype, male, (PSUZC-CR-00300).

Allorchestoides gen. n. 

Diagnosis: Male. Mouthparts, mandible, right incisor process four dentate; left incisor process six dentate; accessory setal row present; molar triturative. Maxilla 1 outer plate with six distal setal-teeth. Maxilla 2, inner plate with an enlarged proximal seta; outer plate subequal to inner plate in length. Maxilliped, outer plate shorter than article 2 of maxilliped palp; palp well-developed, dactyl unguiform. Coxal plates 1–4 deep, subrectangular; coxal plate 1–3 posterior marginal cusp absent. Gnathopods sexually dimorphic. Male gnathopod 1 weakly chelate; carpal lobe well-developed; palm slightly protruding at palmar corner, dactylus fitting palm. Gnathopod 2 propodal palm smoothly concave, interior margin lined with pappose setae. Epimeral side plates ordinary, plate 2 deepest. Pleopods peduncle with 2 small retinacula;

Female. Gnathopods 1 and 2 weakly chelate; carpal lobe well-developed, surpassing over propodus.

Type species: Allorchestoides rosea, new species, here designated.

Etymology: The specific name, Allorchestoides, alludes to fact that the new genus is allied to Allorchestes Dana, 1849. The gender is feminine as the gender adopted by its original authors.

Remarks: The new genus is similar to Allorchestes Dana, 1849, from the north and south Pacific, because it has a dactylus of maxilliped unguiform; carpus of male gnathopod 2 lobate, projecting between the merus and propodus; uropod 3 uniramus; and telson cleft that is half-length. However, the 1-articulate maxilla 1 palp in Allorchestes is reduced and tiny, not reaching the base of the setal-teeth of the outer lobe, while that of Allorchestoides gen. n. is absent.


Fig 3. Allorchestoides rosea sp. n. holotype male (PSUZC-CR-00300).
 (A) male body, lateral (PSUZC-CR-00300), (B) antenna 1, (C) antenna 2, (D) gnathopod 1, (E) gnathopod 2. 
Scales bars: 0.5 mm. 

Fig 7. Allorchestoides rosea sp. n. Allotypes, female, (PSUZC-CR-00301). 
(A) Female body, lateral, (B) antenna 1, (C) antenna 2, (D) gnathopod 1, (E) gnathopod 2. 
Scales bars: 0.5 mm.

Allorchestoides rosea n. sp.  

Etymology: This species is named after the distinct reddish color while the amphipod alive (Fig 2).

Type locality: THAILAND, Bang Krachao Estuary near Chao Phraya River mouth (13°41'47.4"N 100°33'52.4"E), Nipa Palm leafs in mangrove forest, 2016, Dumrongrojwattana,P.

Type material: Holotype. ♂, PSUZC-CR-0300. Allotype, ♀ collected with holotype;..

Fig 1. Map of sampling area; THAILAND, Bang Krachao Estuary near Chao Phraya River mouth. 


Koraon Wongkamhaeng , Pongrat Dumrongrojwattana, Myung‐Hwa Shin. 2018. Discovery of A New Genus and Species of Dogielinotid Amphipod (Crustacea: Amphipoda: Dogielinotidae) from the Nipa Palm in Thailand, with An Updated Key to the Genera. PLoS ONE. 13(10); e0204299.  DOI:   10.1371/journal.pone.0204299